П 34. Умножение десятичных дробей на натуральные числа

Пусть поле имеет форму квадрата со стороной 1,83 км. Найдем периметр поля: 1,85+1,85+1,85+1,85=7,32 км. Для решения задачи мы нашли сумму четырех слагаемых, каждое из которых равно 1,83. Такую сумму называют произведением числа 1, 83 и натурального числа 4 и обозначают 1,83∙4.

Произведением десятичной дроби и натурального числа называют сумму слагаемых, каждое из которых равно этой дроби, а количество слагаемых равно этому натуральному числу.


Значение 7,32 для произведения 1,83∙4 можно получить иначе: умножить 1,83 на 4, не обращая внимание на запятую, а в полученном произведении 732 отделить запятой столько цифр справа, сколько их после запятой в дроби 1,83:



Чтобы умножить десятичную дробь на натуральное число, надо:
1) умножить её на это число, не обращая внимания на запятую;
2) в полученном произведении отделить запятой столько цифр справа, сколько их отделена запятой в десятичной дроби.

Найдем произведение 9,865∙10. По правилу сначала умножаем 9865 на 10, получим 9865∙10=9865. Теперь отделяем запятой три цифры справа и получаем:

9,865∙10=98,650=98,65

Таким образом при умножении 9,865 на 10 мы переносим запятую через одну цифру вправо. Если умножить 9,865 на 100, то получим 986,5, то есть запятую перенесли через две цифры вправо.


Чтобы умножить десятичную дробь на 10, 100, 1000 и так далее, надо в этой дроби перенести запятую на столько цифр право, сколько нулей стоит в множителе после единицы.


П.35 Деление десятичных дробей на натуральные числа


Задача. Кусок ленты длиной 19,2 м разрезали на 8 равных частей. Найдите длину каждой части.


Решение. Чтобы решить задачу, выразим длину ленты в дециметрах: 19,2 м = 192 дм. Но 192 : 8 = 24. Значит, длина каждой части равна 24 дм, то есть 2,4 м. Если умножить 2,4 на 8, получим 19,2. Значит, 2,4 является частным от деления 19,2 на 8.
Пишут: 19,2 : 8 = 2,4.
Тот же ответ можно получить, не переводя метры в дециметры. Для этого надо разделить 19,2 на 8, не обращая внимания на запятую, и поставить в частном запятую, когда кончится деление целой части:


Разделить десятичную дробь на натуральное число — значит найти такую дробь, которая при умножении на это натуральное число дает делимое.

Чтобы разделить десятичную дробь на натуральное число, надо:
1) разделить дробь на это число, не обращай внимания на запятую;
2) поставить в частном запятую, когда кончится деление целой части.

Если целая часть меньше делителя, то частное начинается с нуля целых:



Разделим 96,1 на 10. Если частное умножить на 10, должно получиться снова 96,1.
Но при умножении десятичной дроби на 10 запятую переносят на одну цифру вправо. Значит, при делении на 10 запятую надо переносить на одну цифру влево: 96,1 : 10 = 9,61.
Проверка: 9,61 . 10 = 96,1.
При делении на 100 запятую переносят на две цифры влево.

Чтобы разделить десятичную дробь на 10, 100, 1000 и так далее, надо в этой дроби перенести запятую на столько цифр влево, сколько нулей стоит в делителе после единицы.
При этом иногда приходится написать перед целой частью нуль или несколько нулей.
Например: 8,765 : 100 = 008,765 : 100 = 0,08765.
С помощью деления находят десятичную дробь, равную данной обыкновенной дроби.
Другими словами, с помощью деления обращают обыкновенную дробь в
десятичную.

Пример. Обратим дробь  в десятичную.


Решение. Дробь  является частным от деления 3 на 4. Деля 3 на 4, получаем десятичную дробь 0,75. Значит,