1. Интегрирование рациональных дробей.

2. Алгоритм интегрирования рациональной дроби.

3. Примеры интегрирования рациональных функций.

 

Интегрирование рациональных дробей

 

Рациональной дробью называется дробь вида

– многочлены степени m и n соответственно. Рациональная дробь называется правильной , если степень числителя меньше степени знаменателя (m<n), в противном случае дробь называется неправильной .

Простейшими элементарными дробями называются дроби следующего вида:

Пример 1

Пример 2

Интегралы, содержащие в знаменателе квадратный трехчлен, можно вычислить, применяя прием выделения полного квадрата разности или суммы. Рассмотрим пример такого интеграла.

Пример 3.

Алгоритм интегрирования рациональной дроби

1. Если дробь неправильная, надо выделить целую часть рациональной дроби, разделив числитель на знаменатель по правилу деления многочлена на многочлен, т.е. представить в виде:

2. Знаменатель разложим на простейшие сомножители: Qn(x)

3. Представим дробь 

виде суммы простейших дробей с неопределенными коэффициентами.

  1. Приведем все дроби в разложении к общему знаменателю и приравняем числители в обеих частях равенства.
  2. Составим систему уравнений, используя равенство многочленов, стоящих в числителе, приравнивая коэффициенты при одинаковых степенях x.
  3. Решим систему уравнений, находя некоторые коэффициенты методом частных значений, полагая равным действительным корням знаменателя.
  4. Подставим найденные коэффициенты A1,A2,…,Cs,Ds в разложение дроби.
  5. Проинтегрируем простейшие дроби.

 

Примеры интегрирования рациональных функций

Пример 4.

Корни знаменателя: x=1, а x2+1 = 0 не имеет действительных корней.

Тогда разложение для данной дроби имеет вид:

 

Приводя полученные дроби к общему знаменателю, получим тождество:

Пример 5.

Вычислим коэффициенты разложения, приравнивая коэффициенты при одинаковых степенях. Так как знаменатель имеет три действительных различных корня, то три коэффициента найдем методом частных значений.

Подставим найденные коэффициенты в разложение и проинтегрируем дроби.