НОД, НОД
НОД — это наибольший общий делитель.
НОК — это наименьшее общее кратное.
Определения:
- Наибольшим общим делителем чисел a и b называется наибольшее число, на которое a и b делятся без остатка.
- Наименьшее общее кратное (НОК) двух целых чисел m и n есть наименьшее натуральное число, которое делится на m и n без остатка
Способы нахождения НОД двух чисел:
1 способ (следует из определения): Метод полного перебора для нахождения наибольшего общего делителя (НОД) натуральных чисел.
- Выписываем все делители числа а;
- Выписываем все делители числа b;
- Выбираем среди них общие делители;
- Среди общих делителей выбираем самое большое число – это и есть НОД(a, b).
2 способ : Метод перебора делителей меньшего числа для нахождения наибольшего общего делителя (НОД) натуральных чисел.
- Найти делители меньшего из данных чисел.
- Найти, начиная с большего, тот из выписанных делителей, который является также делителем другого числа.
- Записать найденное число – НОД.
3 способ; Метод нахождения наибольшего общего делителя (НОД) натуральных чисел с помощью разложения на множители.
- Находим разложение чисел на простые множители.
- Подчеркиваем общие числа.
- Находим произведение подчеркнутых чисел у одного числа.
- Записываем ответ.
4 способ: Алгоритм Евклида нахождения наибольшего общего делителя (НОД) двух натуральных чисел вычитанием.
- Из большего числа вычитается меньшее.
- Если получается 0, то числа равны друг другу и являются наибольшим общим делителем.
- Если результат вычитания не равен 0, то большее число заменяется на результат вычитания.
- Переход к пункту 1.
Способы нахождения НОК двух чисел:
1 способ: Метод перебора
1. Выписываем в строчку кратные для каждого из чисел, пока не найдётся кратное, одинаковое для обоих чисел.
2 способ; Метод нахождения наибольшего общего делителя (НОД) натуральных чисел с помощью разложения на множители
- Разложить данные числа на простые множители.
- Выписать в строчку множители, входящие в разложение самого большого из чисел, а под ним - разложение остальных чисел.
- Подчеркнуть в разложении меньшего числа множители, которые не вошли в разложение бóльшего числа и добавить эти множители в разложение большего числа.
- Полученное произведение записать в ответ.
Свойства наибольшего общего делителя:
- НОД(a, b) = НОД(b, a)
- НОД(a, b) = НОД(-a, b)
- НОД(a, b) = НОД(|a|,|b|)
- НОД(a, 0) = |a|
- НОД(a, к • a) = |a|, при любом к ∈ Z
- НОД(a, НОД(b, с)) = НОД(НОД(a, b), c)
Свойства наименьшего общего кратного:
- НОК(a, b) = НОК(b, a)
- НОД(a, b) = НОД(-a, b)
- НОД(a, b) = НОД(|a|,|b|)
- НОК(a, НОК(b, с)) = НОК(НОК(a, b), c)