5.1. Координатный луч. Единичный отрезок

 

Натуральные числа можно изображать на луче. Построим луч с началом в точке О, направив его слева - направо, направление отметим стрелкой.

Началу луча (точке О) поставим в соответствие число 0 (ноль). Отложим от точки О отрезок ОА произвольной длины. Точке А поставим в соответствие число 1 (один). Длину отрезка ОА будем считать равной 1 (единице). Отрезок АВ = 1 называется единичным отрезком. Отложим от точки А в направлении луча отрезок АВ = ОА. Поставим точке В в соответствие число 2. Заметим, что точка В находится от точки О на расстоянии  в два раза большем, чем точка А. Значит, длина отрезка ОВ равна 2 (двум единицам). Продолжая откладывать в направлении луча отрезки, равные единичному, будем получать точки, которым соответствуют числа 3, 4, 5, и т.д. Данные точки удалены от точки О соответственно на 3, 4, 5, и т.д. единиц.

Луч, построенный таким способом, называется координатным или числовым. Начало числового луча, точка О, называется точкой отсчета. Числа, поставленные в соответствие точкам на этом луче, называются координатами этих точек (отсюда: координатный луч). Пишут: О(0), А(1), В(2), читают: «точка О с координатой 0 (ноль), точка А с координатой 1 (один), точка В с координатой 2 (два)» и т.д.

Любое натуральное число n можно изобразить на координатном луче, при этом соответствующая ему точка P будет удалена от точки О на n единиц. Пишут: ОP = n и P(n) - точка P (читают: "пэ") с координатой n (читают: "эн"). Например, чтобы отметить на числовом луче точку К(107), необходимо от точки О отложить 107 отрезков, равных единичному. В качестве единичного можно выбрать отрезок любой длины. Часто длину единичного отрезка выбирают такой, чтобы было возможно в пределах рисунка изобразить на числовом луче необходимые натуральные числа. Рассмотрите пример

5.2. Шкала

Важным применением числового луча являются шкалы и диаграммы. Они используются в измерительных приборах и устройствах, при помощи которых измеряют различные величины. Одним из основных элементов измерительных приборов является шкала. Она представляет собой числовой луч, нанесенный на металлическое, деревянное, пластиковое, стеклянное или другое основание. Часто шкала выполнена в виде окружности или части окружности, которые разделены штрихами на равные части (деления-дуги) подобно числовому лучу. Каждому штриху на прямой или круговой шкале поставлено в соответствие определенное число. Это значение измеряемой величины. Например, числу 0 на шкале термометра соответствует температура 00С, читают: «ноль градусов Цельсия». Это температура, при которой начинает таять лед (или начинает замерзать вода).

Используя измерительные приборы и инструменты со шкалами, определяют значение измеряемой величины по положению указателя на шкале. Чаще всего указателем служат стрелки. Они могут перемещаться вдоль шкалы, отмечая значение измеряемой величины (например, стрелка часов, стрелка весов, стрелка спидометра – прибора для измерения скорости, рисунок 3.1.). Подобна смещающейся стрелке граница столбика ртути или подкрашенного спирта в термометре (рисунок 3.1). В некоторых приборах движется не стрелка вдоль шкалы, а шкала перемещается относительно неподвижной стрелки (метки, штриха), например, в напольных весах. В некоторых инструментах (линейка, рулетка) указателем служат границы самого измеряемого предмета.

Промежутки (части шкалы) между соседними штрихами шкалы называются деления. Расстояние между соседними штрихами, выраженное в единицах измеряемой величины, называется ценой деления (разность чисел, которым соответствуют соседние штрихи шкалы.) Например, цена деления спидометра на рисунке 3.1. равна 20 км/ч (двадцать километров в час), а цена деления комнатного термометра на рисунке 3.1. равна 10С (один градус Цельсия).

      Диаграмма

Для видимого изображения величин используют линейные, столбчатые или круговые диаграммы. Диаграмма состоит из числового луча-шкалы, направленного слева - направо или снизу – вверх. Кроме того на диаграмме помещены отрезки или прямоугольники (столбцы), изображающие сравниваемые величины. При этом длина отрезков или столбцов в единицах шкалы равна соответствующим величинам. На диаграмме возле числового луча-шкалы подписывают название единиц измерения, в которых отложены величины. На рисунке 3.2. изображена столбчатая диаграмма, а на рисунке 3.3 линейная.

3.2.1. Величины и приборы для их измерения

В таблице приведены названия некоторых величин, а также  приборов и инструментов, предназначенных для их измерения. (Жирным шрифтом выделены основные единицы Международной системы единиц).

5.2.2. Термометры. Измерение температуры

На рисунке 3.4 приведены термометры, в которых использованы разные температурные шкалы: Реомюра (°R), Цельсия (°С) и Фаренгейта (°F).В них использован один и тот же температурный интервал – разность температур кипения воды и плавления льда. Этот интервал разделён на различное число частей: в шкале Реомюра – на 80 частей, шкале Цельсия – на 100 частей, в шкале Фаренгейта – на 180 частей. При этом в шкалах Реомюра и Цельсия температуре таяния льда соответствует число 0 (ноль), а в шкале Фаренгейта –          число 32. Единицы температуры в этих термометрах: градус по Реомюру, градус по Цельсию, градус по Фаренгейту. В устройстве термометров используется свойство жидкостей (спирта, ртути) расширяться при нагревании. При этом различные жидкости по-разному расширяются при нагревании, что видно на рисунке 3.5, где штрихи для столбика спирта и ртути не совпадают при одинаковой температуре.

5.2.3. Измерение влажности воздуха

Влажность воздуха зависит от количества в нём водяных паров. Например, летом в пустыне воздух сухой, влажность его низкая, так как в нём содержится мало паров воды. В субтропиках, например, в Сочи влажность высокая, в воздухе много водяных паров. Измерить влажность можно с помощью двух термометров. Один из них обычный (сухой термометр). У второго шарик обёрнут влажной тканью (влажный термометр). Известно, что при испарении воды температура тела понижается. (Вспомните озноб при выходе из моря после купания). Поэтому влажный термометр показывает более низкую температуру. Чем суше воздух, тем больше разность показаний двух термометров. Если показания термометров одинаковы (разность равна нулю), то влажность воздуха равна 100 %. В этом случае выпадает роса. Прибор, измеряющий влажность воздуха, называется психрометром (рисунок 3.6). Он снабжён таблицей, в которой приведены: показания сухого термометра, разность показаний двух термометров, влажность воздуха в процентах. Чем ближе влажность к 100%, тем более влажный воздух. Нормальная влажность в помещениях должна быть равна около 60%.

               

Блок 3.3. Самоподготовка

5.3.1. Заполните таблицу

Отвечая на вопросы таблицы, заполняйте свободную колонку («Ответ»). При этом используйте рисунки приборов в блоке «Дополнительный».

 

760 мм. рт. ст. считается нормальным. На рисунке 3.11 показано изменение атмосферного давления при подъёме на самую высокую гору Эверест.

Постройте линейную диаграмму изменения давления, отложив на вертикальном луче высоту над уровнем моря, а по горизонтали давление.

 

Блок 5.4. Проблемный

Построение числового луча с единичным отрезком заданной длины

 

Для решения этой учебной проблемы работайте по плану, приведенному в левой колонке таблицы, при этом правую колонку рекомендуется закрыть листом бумаги. Ответив на все вопросы, сопоставьте свои выводы с приведёнными решениями.

Блок 5.5. Фасетный тест

Числовой луч, шкала, диаграмма

В задачах фасетного теста использованы рисунки из таблицы. Все задачи начинаются так: «ЕСЛИ числовой луч представлен на рисунке …., то…»   

 

ЕСЛИ: числовой луч представлен на рисунке…                               Таблица

ТО:

  1. Количество единиц между соседними штрихами числового луча.
  2. Координаты точек А, В, С, D.
  3. Длина (в сантиметрах) отрезков АВ, ВС, АD, ВD соответственно.
  4. Длина (в метрах) отрезков АВ, ВС, АD, ВD соответственно.
  5. Натуральные числа, расположенные на числовом луче левее точки D.
  6. Натуральные числа, расположенные на числовом луче между точками А и С.
  7. Количество натуральных чисел, лежащих на числовом луче между точками А и D.
  8. Количество натуральных чисел, лежащих на числовом луче между точками В и С.
  9. Цена деления шкалы прибора.
  10. Скорость автомобиля в км/ч, если стрелка спидометра указывает на точки А, В, С, D соответственно.
  11. Величина (в км/ч), на которую увеличилась скорость автомобиля, если стрелка спидометра переместилась из точки В в точку С.
  12. Величина скорости автомобиля после того, как водитель уменьшил скорость на        84 км/ч (перед уменьшением скорости стрелка спидометра указывала на точку D).
  13. Масса груза на весах в центнерах, если стрелка – указатель весов – расположена напротив  точек А, В, С соответственно.
  14. Масса груза на весах в килограммах, если стрелка – указатель весов – расположена напротив точек А, В, С соответственно.
  15. Масса груза на весах в граммах, если стрелка – указатель весов – расположена напротив  точек А, В, С соответственно.
  16. Количество учеников в 5 классе.
  17. Разность между количеством учеников, успевающих на «4», и количеством учеников, успевающих на «3».
  18. Отношение количества учеников, успевающих на «4» и «5», к количеству учеников, успевающих на «3».

 

РАВНО (равна, равны, это):

 а) 10   б) 6,12,3,3     в) 1   г) 99,102,106,104   д) 2   е) 201,202    ж) 49   з) 3500,3000,8000,4500

 и) 5,2,1,4   к) 599   л) 6,3,3,9   м) 10,4,16,7   н) 100   о) 4 км/ч   п) 65,85,105,115   р) 7,2,4,6      с) 20,20,50,30   т) 0   у) 700,600,1600,900   ф) 1,2,3,4,5,6   х) 25,10,5,20   ц) 3,4,5,2   ч) 203,197,200,206   ш) 15,20,25,10   щ) 1599   ы) 11,12,13,14,15   э) 30,60,15,15  ю) 0,700,1300,1600   я) 100,100,250,150   аа) 30,15,15,45  бб) 4   вв) 1,2,3,4,5   гг) 17  дд) 500 кг   ее) 19    жж) 80   зз) 100,101,102,103,104,105   ии)5,6   кк) 28,64,100,164   лл) 1500000,3000000,4500000   мм) 11   нн) 36   оо) 1500,3000,4500   пп) 7   рр) 24  сс) 15,30,45

Блок 5.6. Учебная мозаика

В заданиях мозаики использованы приборы из блока «Дополнительный». Ниже приведено поле мозаики. На нём указаны названия приборов. Кроме того для каждого прибора обозначены: измеряемая величина (В), единица измерения величины (Е), показание прибора (П), цена деления шкалы (Ц). Далее помещены ячейки мозаики. Прочитав ячейку, вы должны сначала определить прибор, к которому она относится, и поставить в окружность ячейки номер прибора. Затем надо догадаться, о чём эта ячейка. Если речь идёт об измеряемой величине, надо к номеру приписать букву В. Если это единица измерения – поставить букву Е, если показание прибора – букву П, если цена деления – букву Ц. Таким образом надо обозначить все ячейки мозаики. Если ячейки вырезать и расположить так, как на поле, то можно систематизировать сведения о приборе. В компьютерном варианте мозаики при правильном расположении ячеек создаётся рисунок.