1. Понятие уравнения и его корней |
|
Определение |
Пример |
Равенство с переменной называется уравнением. В общем виде уравнение с одной переменной x записывают так: f (я) = g (я). Под этой краткой записью понимают математическую запись задачи о нахождении значений аргумента, при которых значения двух данных функций равны. |
2х = —1 — линейное уравнение; х2 — 3х + 2 = 0 — квадратное уравнение; чJx + 2 = x — иррациональное уравнение (содержит переменную под знаком корня). |
Корнем (или решением) уравнения с одной переменной называется значение переменной, при подстановке которого в уравнение получается верное равенство. Решить уравнение — значит найти все его корни (и обосновать, что других корней нет) или доказать, что корней нет. |
x = 2 — корень уравнения \/x + 2 = x, так как при x = 2 получаем верное равенство: -\Д = 2, то есть 2 = 2. |
||
2. Область допустимых значений (ОДЗ) |
|||
Областью допустимых значений (или областью определения) уравнения называется общая область определения для функций f (x) и g (x), стоящих в левой и правой частях уравнения. |
Для уравнения л/x + 2 = x ОДЗ: x + 2 1 0, то есть x 1 —2, так как область определения функции f (x) = yj x + 2 определяется условием: x + 2 1 0, а область определения функции g (x) = x — множество всех действительных чисел. |
||
3. Уравнения-следствия |
|||
Если каждый корень первого уравнения является корнем второго, то второе уравнение называется следствием первого уравнения. Если из правильности первого равенства следует правильность каждого последующего, то получаем уравнения-следствия. При использовании уравнений-следствий не происходит потери корней исходного уравнения, но возможно появление посторонних корней. Поэтому при использовании уравнений-следствий проверка полученных корней подстановкой их в исходное уравнение является составной частью решения (см. пункт 5 этой таблицы). |
л/x + 2 = x. ► Возведем обе части уравнения в квадрат: (x + 2) = x2, x + 2 = x2, x2 — x — 2 = 0, x1 = 2, x2 = —1. Проверка. x = 2 — корень (см. выше); x = —1 — посторонний корень (при х = —1 получаем неверное равенство 1 = —1). Ответ: 2. <1 |
4. Равносильные уравнения |
|
Определение |
Простейшие теоремы |
Два уравнения называются равносильными на некотором множестве, если на этом множестве они имеют одни и те же корни. То есть каждый корень первого уравнения является корнем второго уравнения и, наоборот, каждый корень второго уравнения является корнем первого. (Схема решения уравнений с помощью равносильных преобразований приведена в пункте 5 этой таблицы.) |
1. Если из одной части уравнения перенести в другую слагаемые с противоположным знаком, то получим уравнение, равносильное заданному (на любом множестве). |
2. Если обе части уравнения умножить или разделить на одно и то же число, не равное нулю (или на одну и ту же функцию, которая определена и не равна нулю на ОДЗ заданного уравнения), то получим уравнение, равносильное заданному (на ОДЗ заданного уравнения). |
5. Схема поиска плана решения уравнений |
Решение уравнений |
Объяснение и обоснование 1. Понятие уравнения и его корней. Уравнение в математике чаще всего понимают как аналитическую запись задачи о нахождении значений аргумента, при которых значения двух данных функций равны. Поэтому в общем виде уравнения с одной переменной x записывают так: f (x) = g (x). Часто уравнения определяют короче — как равенство с переменной. Напомним, что корнем (или решением) уравнения с одной переменной называется значение переменной, при подстановке которого в уравнение получается верное равенство. Решить уравнение — значит найти все его корни (и обосновать, что других корней нет) или доказать, что корней нет. Например, уравнение 2x = —1 имеет единственный корень x = -1, а уравнение | x | = —1 не имеет корней, поскольку значение | x | не может быть отрицательным числом. 2. Область допустимых значений (ОДЗ) уравнения. Если задано уравнение f (x) = g (x), то общая область определения для функций f (x) и g (x) называется областью допустимых значений этого уравнения. (Иногда используются также термины «область определения уравнения» или «множество допустимых значений уравнения».) Например, для уравнения х2 = х областью допустимых значений являются все действительные числа. Это можно записать, например, так. ОДЗ: R, поскольку функции f (x) = x2 и g (x) = x имеют области определения R. Понятно, что каждый корень данного уравнения принадлежит как области определения функции f (x), так и области определения функции g (x) (иначе мы не сможем получить верное числовое равенство). Поэтому каждый корень уравнения обязательно принадлежит ОДЗ этого уравнения. Это позволяет в некоторых случаях применить анализ ОДЗ уравнения при его решении. Например, в уравнении л/x - 2 + \/1 - x = x функция g (x) = x определена при всех действительных значениях x, а функция f (x) = л/x - 2 + VT - x ко при условии, что под знаком квадратного корня будут стоять неотрицательные выражения. Следовательно, ОДЗ этого уравнения задается систе- lx - 210, lx 12, мой -! из которой получаем систему -! не имеющую решений. [1 - x 10, [x < 1, Таким образом, ОДЗ данного уравнения не содержит ни одного числа, и поэтому это уравнение не имеет корней. Нахождение ОДЗ данного уравнения может быть полезным для его решения, но не всегда является обязательным элементом решения уравнения. 3. Методы решения уравнений. Для решения уравнений используют методы точного и приближенного решений. А именно, для точного решения уравнений в курсе математики 5—6 классов использовались зависимости между компонентами и результатами действий и свойства числовых равенств; |
в курсе алгебры 7—9 классов — равносильные преобразования уравнений, а для приближенного решения уравнений — графический метод. Графический метод решения уравнений не дает высокой точности нахождения корней уравнения, и с его помощью чаще всего можно получить только грубые приближения корней. Иногда удобно графически определить количество корней уравнения или найти границы, в которых находятся эти корни. В некоторых случаях можно графически доказать, что уравнение не имеет корней. По указанным причинам в школьном курсе алгебры и начал математического анализа под требованием «решить уравнение» понимается требование «используя методы точного решения, найти корни данного уравнения». Приближенными методами решения уравнений можно пользоваться только тогда, когда об этом говорится в условии задачи (например, если ставится задача решить уравнение графически). В основном при решении уравнений разных видов нам придется применять один из двух методов решения. Первый из них состоит в том, что данное уравнение заменяется более простым уравнением, имеющим те же корни,— равносильным уравнением. В свою очередь, полученное уравнение заменяется еще более простым, равносильным ему, и т. д. В результате получаем простейшее уравнение, которое равносильно заданному и корни которого легко находятся. Эти корни и только они являются корнями данного уравнения. Второй метод решения уравнений состоит в том, что данное уравнение заменяется более простым уравнением, среди корней которого находятся все корни данного, то есть так называемым уравнением-следствием. В свою очередь, полученное уравнение заменяется еще более простым уравнением- следствием, и так далее до тех пор, пока не получим простейшее уравнение, корни которого легко находятся. Тогда все корни данного уравнения находятся среди корней последнего уравнения. Поэтому, чтобы найти корни данного уравнения, достаточно корни последнего уравнения подставить в данное и с помощью такой проверки получить корни данного уравнения (и исключить так называемые посторонние корни — те корни последнего уравнения, которые не удовлетворяют заданному). В следующем пункте будет также показано применение свойств функций к решению уравнений определенного вида. Уравнения-следствия Рассмотрим более детально, как можно решать уравнения с помощью уравнений-следствий. При решении уравнений главное — не потерять корни данного уравнения, и поэтому в первую очередь мы должны следить за тем, чтобы каждый корень исходного уравнения оставался корнем следующего. Фактически это и является определением уравнения-следствия: |
в том случае, когда каждый корень первого уравнения является |
Это определение позволяет обосновать такой о р и е н т и р: для получения уравнения-следствия достаточно рассмотреть данное уравнение как верное числовое равенство и гарантировать (то есть иметь возможность обосновать), что каждое следующее уравнение мы можем получить как верное числовое равенство. Действительно, если придерживаться этого ориентира, то каждый корень первого уравнения обращает это уравнение в верное числовое равенство, но тогда и второе уравнение будет верным числовым равенством, то есть рассматриваемое значение переменной является корнем и второго уравнения, а это и означает, что второе уравнение является следствием первого. Применим приведенный ориентир к уравнению (пока что не ис- пользуя известное условие равенства дроби нулю). Если правильно то, что дробь равна нулю, то обязательно ее числитель равен нулю. Таким образом, из заданного уравнения получаем уравнение- следствие х2 — 1 = 0. Но тогда верно, что (х — 1)(х + 1) = 0. Последнее уравнение имеет два корня: х = 1 и х = —1. Подставляя их в заданное уравнение, видим, что только корень х = 1 удовлетворяет исходному уравнению. Почему это случилось? Это происходит поэтому, что, используя уравнения-следствия, мы гарантируем только то, что корни заданного уравнения не теряются (каждый корень первого уравнения является корнем второго). Но второе уравнение, кроме корней первого уравнения, имеет еще и другой корень, который не является корнем первого уравнения. Для первого уравнения этот корень является посторонним, и, чтобы его отсеять, выполняется проверка подстановкой корней в исходное уравнение. (Более полно причины появления посторонних корней рассмотрены в таблице 7 на с. 54.) Таким образом, чтобы правильно применять уравнения-следствия для решения уравнений, необходимо помнить еще один о р и е н т и р: при использовании уравнений-следствий возможно появление посторонних корней, и поэтому проверка подстановкой корней в исходное уравнение является составной частью решения. Схема применения этих ориентиров дана в таблице 6. В пункте 3 этой таблицы приведено решение уравнения |
Замечание. Переход от данного уравнения к уравнению-следствию можно обозначить специальным значком ^, но его использование для записи решения не является обязательным. Вместе с тем, если этот значок записан, то это свидетельствует о том, что мы воспользовались уравнениями- следствиями, и поэтому обязательно в запись решения необходимо включить проверку полученных корней. |
Равносильные уравнения |
С понятием равносильности вы знакомы еще из курса алгебры 7 класса, где равносильными назывались те уравнения, которые имели одни и те же корни. Заметим, что равносильными считались и такие два уравнения, которые не имели корней. Формально будем считать, что и в этом случае уравнения имеют одни и те же корни, поскольку ответы к таким уравнениям одинаковы: «уравнения не имеют корней» (точнее: одинаковыми являются множества корней таких уравнений — они оба пустые, что обозначается символом 0). В курсе алгебры и начал математического анализа мы будем рассматривать более общее понятие равносильности, а именно: равносильность на определенном множестве. |
Два уравнения называются равносильными на некотором множе- и, наоборот, каждый корень второго уравнения является корнем Для уравнений, заданных на множестве всех действительных чисел (например, для линейных), мы можем однозначно дать ответ на вопрос: «Равносильны ли данные уравнения?» Например, уравнения х + 3 = 0 и 2х + 6 = 0 — равносильные, поскольку оба имеют одинаковый корень х = —3 и других корней не имеют, таким образом, каждое из них имеет те же решения, что и второе. При рассмотрении равносильности уравнений на множестве, которое отличается от множества всех действительных чисел, ответ на вопрос «Равносильны ли данные уравнения?» может существенно зависеть от того, на каком множестве мы рассматриваем эти уравнения. Например, если рассмотреть уравнения: |
то, как было показано выше, уравнение (3) имеет единственный корень х = 1, а уравнение (4) — два корня: х = 1 и х = —1. Таким образом, на множестве всех действительных чисел эти уравнения не являются равносильными, поскольку у уравнения (4) есть корень х = —1, которого нет у уравнения (3). Но на множестве положительных действительных чисел эти уравнения равно |
сильны, поскольку на этом множестве уравнение (3) имеет единственный положительный корень х = 1 и уравнение (4) также имеет единственный положительный корень х = 1. Следовательно, на множестве положительных чисел каждое из этих уравнений имеет те же решения, что и второе. Укажем, что множество, на котором рассматривается равносильность уравнений, как правило, не задается искусственно (как в последнем случае), а чаще всего таким множеством является ОДЗ исходного уравнения. Договоримся, что далее все равносильные преобразования уравнений (а также неравенств и систем уравнений и неравенств) мы будем выполнять на ОДЗ исходного уравнения (неравенства или системы). Отметим, что в том случае, когда ОДЗ заданного уравнения является множество всех действительных чисел, мы не всегда будем ее записывать (как не записывали ОДЗ при решении линейных или квадратных уравнений). И в других случаях главное — не записать ОДЗ в решение уравнения, а реально учесть ее при выполнении равносильных преобразований данного уравнения. Например, для уравнения \Ix + 2 = x ОДЗ задается неравенством х + 2 1 0. Когда мы переходим к уравнению х + 2 = х2, то для всех его корней это уравнение является верным равенством. Тогда выражение х2, стоящее в правой части этого равенства, всегда неотрицательно (х2 1 0), таким образом, и равное ему выражение х + 2 также будет неотрицательным: х + 2 1 0. Но это и означает, что ОДЗ данного уравнения (х + 2 1 0) учтено автоматически для всех корней второго уравнения и поэтому при переходе от уравнения yjx + 2 = x к уравнению х + 2 = х2 ОДЗ заданного уравнения можно не записывать в решение. Для выполнения равносильных преобразований попробуем выделить общие ориентиры, аналогичные соответствующим ориентирам получения уравнений-следствий. Как указывалось выше, выполняя равносильные преобразования уравнений, необходимо учесть ОДЗ данного уравнения — это и есть первый о р и - ентир для выполнения равносильных преобразований уравнений. По определению равносильности уравнений необходимо гарантировать, чтобы каждый корень первого уравнения был корнем второго и наоборот — каждый корень второго уравнения был корнем первого. Для первой части этого требования мы уже выделили общий ориентир: достаточно гарантировать сохранение правильности равенства при переходе от первого уравнения ко второму (с. 49). Но тогда, чтобы выполнить вторую часть этого требования, достаточно второе уравнение рассмотреть как верное равенство (то есть взять такое значение переменной, которое является корнем второго уравнения) и гарантировать, что при переходе к первому верное равенство сохраняется (этот корень остается и корнем первого уравнения). Фактически из определения равносильности уравнений получаем, что каждое из равносильных уравнений является следствием другого уравнения). Таким образом, при |
выполнении равносильных преобразований мы должны гарантировать сохранение правильности равенства на каждом шаге решения не только при прямых, но и при обратных преобразованиях — это и является вторым о р и - ен т и р ом для решения уравнений с помощью равносильных преобразований. (Соответствующие ориентиры схематически представлены в пункте 5 табл. 6.) Например, чтобы решить с помощью равносильных преобразований урав- x2 -1 ------- = 0, достаточно учесть его ОДЗ: х + 1 Ф 0 и условие равенства x+1 дроби нулю (дробь равна нулю тогда и только тогда, когда числитель дроби равен нулю, а знаменатель не равен нулю). Также следует обратить внимание на то, что на ОДЗ все необходимые преобразования можно выполнить как в прямом, так и в обратном направлениях с сохранением правильности равенства. Запись решения в этом случае может быть такой: x2 -1 = 0. ► ОДЗ: х + 1 Ф 0. Тогда х2 —1 = 0. Отсюда х = 1 (удовлетворяет x+1 условию ОДЗ) или х = —1 (не удовлетворяет условию ОДЗ). Ответ: 1. < Для выполнения равносильных преобразований уравнений можно также пользоваться специальными теоремами о равносильности. В связи с уточнением определения равносильности уравнений обобщим также формулировки простейших теорем о равносильности, известных из курса алгебры 7 класса. |
Теорема 1. Если из одной части уравнения перенести в другую часть слагаемые с противоположным знаком, то получим уравнение, равносильное заданному (на любом множестве). |
Теор е м а 2. Если обе части уравнения умножить или разделить Обоснование этих теорем полностью аналогично обоснованию ориентиров для равносильных преобразований данного уравнения. Замечание. Для обозначения перехода от данного уравнения к равносильному ему уравнению можно применять специальный значок ^, но его использование при записи решений не является обязательным. (Хотя иногда мы будем им пользоваться, чтобы подчеркнуть, что были выполнены именно равносильные преобразования.) |
Причина |
При каких преобразованиях это может происходить |
Пример неправильного (или неполного) решения |
|
|
1. Появление посторонних корней |
||||
Получение уравнений- следствий: |
1. |
Приведение подобных членов |
x2 + л/ x - 2 = 6x + >/ x - 2. Перенесем из правой части уравнения в левую слагаемое \tx - 2 с противоположным знаком и приведем подобные члены. Получим х2 — 6х = 0, х1 = 0, х2 = 6 |
|
а) переход к уравнению, ОДЗ которого шире, чем ОДЗ заданного уравнения; |
2. |
Приведение обеих частей уравнения к общему знаменателю (при сокращении знаменателя) |
4 + 7 = 4 x + 2 x + 3 x2 + 5x + 6 Умножим обе части уравнения на общий знаменатель всех дробей (х + 2)(х + 3). Получим 4 (х + 3) + 7 (х + 2) = 4, 11х = —22, х = —2 |
|
|
3. |
Возведение обеих частей иррационального уравнения в квадрат |
yj2x +1 =Vx. 2х + 1 = х, х = —1 |
|
б) выполнение преобразований, при которых происходит неявное умножение на нуль; |
Умножение обеих частей уравнения на выражение с переменной |
х2 + х + 1 = 0. Умножим обе части уравнения на х —1. (х — 1)(х2 + х + 1) = 0. Получим х3 — 1 = 0, х = 1 |
|
|
Где ошибка |
Как получить правильное (или полное) решение |
Пример правильного (или полного) решения |
при решении уравнения |
|||
|
х1 = 0 не является корнем заданного уравнения |
Выполнить проверку подстановкой корней в заданное уравнение |
x2 + V x - 2 = 6x + >/ x - 2. ► х2 — 6х = 0, х1 = 0, х2 = 6. Проверка показывает, что х1 = 0 — посторонний корень, х2 = 6 — корень. Ответ: 6. <1 |
|
х = —2 не является корнем заданного уравнения |
4 ! 7 = 4 x + 2 x + 3 x2 + 5x + 6 ► 4 (x + 3) + 7 (x + 2) = 4; 11x = —22, x = —2. Проверка показывает, что х = -2 — посторонний корень. Ответ: корней нет. < |
|
|
х = —1 не является корнем заданного уравнения |
yj2x +1 = -Jx. ► 2x + 1 = x, х = —1. Проверка показывает, что х = —1 — посторонний корень. Ответ: корней нет. < |
|
|
х = 1 не является корнем заданного уравнения |
В данном уравнении не было необходимости умножать на х — 1. х2 + х + 1 = 0. ► D = —3 < 0. Ответ: корней нет. < Если применить умножение обеих частей уравнения на х — 1, то проверка показывает, что х = 1 — посторонний корень, то есть уравнение не имеет корней. |
Причина |
При каких преобразованиях это может происходить |
Пример неправильного (или неполного) решения |
|
1. Появление посторонних корней |
|||
в) применение к обеим частям уравнения функции, которая не является возрастающей или убывающей. |
Возведение обеих частей уравнения в четную степень или применение к обеим частям уравнения тригонометрических функций (см. с. 272) |
х — 1 = 2х + 1. Возведем обе части уравнения в квадрат: (х — 1)2 = (2х + 1)2. Получим 3х2 + 6х = 0, х1 = 0, х2 = —2 |
|
2. Потеря корней |
|||
Явное или неявное сужение ОДЗ заданного уравнения, в частности выполнение преобразований, в ходе которых происходит неявное деление на нуль |
1. Деление обеих частей уравнения на выражение с переменной |
х2 = х. Поделив обе части уравнения на х, получим х = 1 |
|
2. Сложение, вычитание, умножение или деление обеих частей уравнения на выражение, ОДЗ которого уже, чем ОДЗ заданного уравнения |
х2 = 1. Если к обеим частям уравнения прибавить \[x, то получим уравнение x2 + yfx = 1 + yfx, у которого только один корень х = 1 |
|