1. Понятие уравнения и его корней

Определение

Пример

Равенство с переменной называ­ется уравнением. В общем виде урав­нение с одной переменной x записы­вают так: f (я) = g (я).

Под этой краткой записью пони­мают математическую запись задачи о нахождении значений аргумента, при которых значения двух данных функций равны.

2х = —1 — линейное уравнение; х2 — 3х + 2 = 0 — квадратное уравнение; чJx + 2 = x — иррациональное уравнение (содер­жит переменную под знаком корня).

Корнем (или решением) уравне­ния с одной переменной называется значение переменной, при подста­новке которого в уравнение получа­ется верное равенство.

Решить уравнение — значит най­ти все его корни (и обосновать, что других корней нет) или доказать, что корней нет.

x = 2 — корень уравнения \/x + 2 = x, так как при x = 2 получаем верное равенство: -\Д = 2, то есть 2 = 2.

2. Область допустимых значений (ОДЗ)

Областью допустимых зна­чений (или областью опреде­ления) уравнения называется общая область определения для функций f (x) и g (x), стоя­щих в левой и правой частях уравнения.

Для уравнения л/x + 2 = x ОДЗ: x + 2 1 0, то есть x 1 —2, так как область определения функции f (x) = yj x + 2 опре­деляется условием: x + 2 1 0, а область определения функции g (x) = x — множе­ство всех действительных чисел.

3. Уравнения-следствия

Если каждый корень первого уравне­ния является корнем второго, то второе уравнение называется следствием пер­вого уравнения.

Если из правильности первого равенства следует правильность каждого последую­щего, то получаем уравнения-следствия.

При использовании уравнений-след­ствий не происходит потери корней ис­ходного уравнения, но возможно появление посторонних корней. Поэтому при исполь­зовании уравнений-следствий проверка полученных корней подстановкой их в ис­ходное уравнение является составной час­тью решения (см. пункт 5 этой таблицы).

л/x + 2 = x.

► Возведем обе части уравне­ния в квадрат:

(x + 2) = x2, x + 2 = x2, x2 — x — 2 = 0, x1 = 2, x2 = —1. Проверка. x = 2 — корень (см. выше); x = —1 — посторонний ко­рень (при х = —1 получаем не­верное равенство 1 = —1). Ответ: 2. <1

4. Равносильные уравнения

Определение

Простейшие теоремы

Два уравнения называются равносильными на некотором множестве, если на этом мно­жестве они имеют одни и те же корни.

То есть каждый корень пер­вого уравнения является кор­нем второго уравнения и, на­оборот, каждый корень второго уравнения является корнем первого. (Схема решения урав­нений с помощью равносиль­ных преобразований приведе­на в пункте 5 этой таблицы.)

1. Если из одной части уравнения пе­ренести в другую слагаемые с про­тивоположным знаком, то получим уравнение, равносильное заданному

(на любом множестве).

2. Если обе части уравнения умножить или разделить на одно и то же число, не равное нулю (или на одну и ту же функ­цию, которая определена и не равна нулю на ОДЗ заданного уравнения), то получим уравнение, равносильное за­данному (на ОДЗ заданного уравнения).

 

5. Схема поиска плана решения уравнений

Решение уравнений

Объяснение и обоснование

1.  Понятие уравнения и его корней. Уравнение в математике чаще всего по­нимают как аналитическую запись задачи о нахождении значений аргумен­та, при которых значения двух данных функций равны. Поэтому в общем виде уравнения с одной переменной x записывают так: f (x) = g (x).

Часто уравнения определяют короче — как равенство с переменной.

Напомним, что корнем (или решением) уравнения с одной переменной называется значение переменной, при подстановке которого в уравнение получается верное равенство. Решить уравнение — значит найти все его корни (и обосновать, что других корней нет) или доказать, что корней нет.

Например, уравнение 2x = —1 имеет единственный корень x = -1, а урав­нение | x | = —1 не имеет корней, поскольку значение | x | не может быть от­рицательным числом.

2.  Область допустимых значений (ОДЗ) уравнения. Если задано уравнение f (x) = g (x), то общая область определения для функций f (x) и g (x) назы­вается областью допустимых значений этого уравнения. (Иногда исполь­зуются также термины «область определения уравнения» или «множество допустимых значений уравнения».) Например, для уравнения х2 = х обла­стью допустимых значений являются все действительные числа. Это можно записать, например, так. ОДЗ: R, поскольку функции f (x) = x2 и g (x) = x имеют области определения R.

Понятно, что каждый корень данного уравнения принадлежит как об­ласти определения функции f (x), так и области определения функции g (x) (иначе мы не сможем получить верное числовое равенство). Поэтому каж­дый корень уравнения обязательно принадлежит ОДЗ этого уравнения. Это позволяет в некоторых случаях применить анализ ОДЗ уравнения при его решении.

Например, в уравнении л/x - 2 + \/1 - x = x функция g (x) = x определена при всех действительных значениях x, а функция f (x) = л/x - 2 + VT - x ко при условии, что под знаком квадратного корня будут стоять неотрица­тельные выражения. Следовательно, ОДЗ этого уравнения задается систе-

lx - 210,                                                                             lx 12,

мой -!                        из которой получаем систему -!                        не имеющую решений.

[1 - x 10,                                                                          [x < 1,

Таким образом, ОДЗ данного уравнения не содержит ни одного числа, и по­этому это уравнение не имеет корней.

Нахождение ОДЗ данного уравнения может быть полезным для его ре­шения, но не всегда является обязательным элементом решения уравнения.

3.  Методы решения уравнений. Для решения уравнений используют методы точного и приближенного решений. А именно, для точного решения урав­нений в курсе математики 5—6 классов использовались зависимости меж­ду компонентами и результатами действий и свойства числовых равенств;

в курсе алгебры 7—9 классов — равносильные преобразования уравнений, а для приближенного решения уравнений — графический метод.

Графический метод решения уравнений не дает высокой точности на­хождения корней уравнения, и с его помощью чаще всего можно получить только грубые приближения корней. Иногда удобно графически определить количество корней уравнения или найти границы, в которых находятся эти корни. В некоторых случаях можно графически доказать, что уравнение не имеет корней. По указанным причинам в школьном курсе алгебры и на­чал математического анализа под требованием «решить уравнение» понима­ется требование «используя методы точного решения, найти корни данного уравнения». Приближенными методами решения уравнений можно пользо­ваться только тогда, когда об этом говорится в условии задачи (например, если ставится задача решить уравнение графически).

В основном при решении уравнений разных видов нам придется при­менять один из двух методов решения. Первый из них состоит в том, что данное уравнение заменяется более простым уравнением, имеющим те же корни,— равносильным уравнением. В свою очередь, полученное уравнение заменяется еще более простым, равносильным ему, и т. д. В результате по­лучаем простейшее уравнение, которое равносильно заданному и корни ко­торого легко находятся. Эти корни и только они являются корнями данного уравнения.

Второй метод решения уравнений состоит в том, что данное уравнение заменяется более простым уравнением, среди корней которого находятся все корни данного, то есть так называемым уравнением-следствием. В свою очередь, полученное уравнение заменяется еще более простым уравнением- следствием, и так далее до тех пор, пока не получим простейшее уравнение, корни которого легко находятся. Тогда все корни данного уравнения на­ходятся среди корней последнего уравнения. Поэтому, чтобы найти кор­ни данного уравнения, достаточно корни последнего уравнения подставить в данное и с помощью такой проверки получить корни данного уравнения (и исключить так называемые посторонние корни — те корни последнего уравнения, которые не удовлетворяют заданному).

В следующем пункте будет также показано применение свойств функций к решению уравнений определенного вида.

Уравнения-следствия

Рассмотрим более детально, как можно решать уравнения с помощью уравнений-следствий. При решении уравнений главное — не потерять корни данного уравнения, и поэтому в первую очередь мы должны сле­дить за тем, чтобы каждый корень исходного уравнения оставался корнем следующего. Фактически это и является определением уравнения-след­ствия:

 

в том случае, когда каждый корень первого уравнения является
корнем второго, второе уравнение называется следствием первого.

 

Это определение позволяет обосновать такой о р и е н т и р: для получения уравнения-следствия достаточно рассмотреть данное уравнение как верное числовое равенство и гарантировать (то есть иметь возможность обосно­вать), что каждое следующее уравнение мы можем получить как верное числовое равенство.

Действительно, если придерживаться этого ориентира, то каждый корень первого уравнения обращает это уравнение в верное числовое равенство, но тогда и второе уравнение будет верным числовым равенством, то есть рассматриваемое значение переменной является корнем и второго уравне­ния, а это и означает, что второе уравнение является следствием первого.

Применим приведенный ориентир к уравнению  (пока что не ис-

пользуя известное условие равенства дроби нулю).

Если правильно то, что дробь равна нулю, то обязательно ее числитель равен нулю. Таким образом, из заданного уравнения получаем уравнение- следствие х2 — 1 = 0. Но тогда верно, что (х — 1)(х + 1) = 0. Последнее урав­нение имеет два корня: х = 1 и х = —1. Подставляя их в заданное уравнение, видим, что только корень х = 1 удовлетворяет исходному уравнению. По­чему это случилось?

Это происходит поэтому, что, используя уравнения-следствия, мы гаран­тируем только то, что корни заданного уравнения не теряются (каждый корень первого уравнения является корнем второго). Но второе уравнение, кроме корней первого уравнения, имеет еще и другой корень, который не яв­ляется корнем первого уравнения. Для первого уравнения этот корень явля­ется посторонним, и, чтобы его отсеять, выполняется проверка подстановкой корней в исходное уравнение. (Более полно причины появления посторон­них корней рассмотрены в таблице 7 на с. 54.) Таким образом, чтобы пра­вильно применять уравнения-следствия для решения уравнений, необходи­мо помнить еще один о р и е н т и р: при использовании уравнений-следствий возможно появление посторонних корней, и поэтому проверка подстанов­кой корней в исходное уравнение является составной частью решения.

Схема применения этих ориентиров дана в таблице 6. В пункте 3 этой таблицы приведено решение уравнения

Замечание. Переход от данного уравнения к уравнению-следствию мож­но обозначить специальным значком ^, но его использование для записи решения не является обязательным. Вместе с тем, если этот значок запи­сан, то это свидетельствует о том, что мы воспользовались уравнениями- следствиями, и поэтому обязательно в запись решения необходимо вклю­чить проверку полученных корней.

Равносильные уравнения

С понятием равносильности вы знакомы еще из курса алгебры 7 класса, где равносильными назывались те уравнения, которые имели одни и те же корни. Заметим, что равносильными считались и такие два уравнения, ко­торые не имели корней. Формально будем считать, что и в этом случае урав­нения имеют одни и те же корни, поскольку ответы к таким уравнениям одинаковы: «уравнения не имеют корней» (точнее: одинаковыми являются множества корней таких уравнений — они оба пустые, что обозначается символом 0).

В курсе алгебры и начал математического анализа мы будем рассматри­вать более общее понятие равносильности, а именно: равносильность на определенном множестве.

Два уравнения называются равносильными на некотором множе-
стве, если на этом множестве они имеют одни и те же корни, то
есть каждый корень первого уравнения является корнем второго

и,   наоборот, каждый корень второго уравнения является корнем
первого.

Для уравнений, заданных на множестве всех действительных чисел (например, для линейных), мы можем однозначно дать ответ на вопрос: «Равносильны ли данные уравнения?» Например, уравнения х + 3 = 0 и 2х + 6 = 0 — равносильные, поскольку оба имеют одинаковый корень х = —3 и других корней не имеют, таким образом, каждое из них имеет те же решения, что и второе.

При рассмотрении равносильности уравнений на множестве, которое от­личается от множества всех действительных чисел, ответ на вопрос «Равно­сильны ли данные уравнения?» может существенно зависеть от того, на каком множестве мы рассматриваем эти уравнения. Например, если рас­смотреть уравнения:

то, как было показано выше, уравнение (3) имеет единственный корень х = 1, а уравнение (4) — два корня: х = 1 и х = —1. Таким образом, на множестве всех действительных чисел эти уравнения не являются равносильными, по­скольку у уравнения (4) есть корень х = —1, которого нет у уравнения (3). Но на множестве положительных действительных чисел эти уравнения равно­

сильны, поскольку на этом множестве уравнение (3) имеет единственный положительный корень х = 1 и уравнение (4) также имеет единственный положительный корень х = 1. Следовательно, на множестве положительных чисел каждое из этих уравнений имеет те же решения, что и второе.

Укажем, что множество, на котором рассматривается равносильность уравнений, как правило, не задается искусственно (как в последнем слу­чае), а чаще всего таким множеством является ОДЗ исходного уравнения. Договоримся, что далее

все равносильные преобразования уравнений (а также неравенств и си­стем уравнений и неравенств) мы будем выполнять на ОДЗ исходного урав­нения (неравенства или системы). Отметим, что в том случае, когда ОДЗ за­данного уравнения является множество всех действительных чисел, мы не всегда будем ее записывать (как не записывали ОДЗ при решении линейных или квадратных уравнений). И в других случаях главное — не записать ОДЗ в решение уравнения, а реально учесть ее при выполнении равносильных преобразований данного уравнения.

Например, для уравнения \Ix + 2 = x ОДЗ задается неравенством х + 2 1 0. Когда мы переходим к уравнению х + 2 = х2, то для всех его корней это уравнение является верным равенством. Тогда выражение х2, стоящее в пра­вой части этого равенства, всегда неотрицательно (х2 1 0), таким образом, и равное ему выражение х + 2 также будет неотрицательным: х + 2 1 0. Но это и означает, что ОДЗ данного уравнения (х + 2 1 0) учтено автоматически для всех корней второго уравнения и поэтому при переходе от уравнения yjx + 2 = x к уравнению х + 2 = х2 ОДЗ заданного уравнения можно не запи­сывать в решение.

Для выполнения равносильных преобразований попробуем выделить общие ориентиры, аналогичные соответствующим ориентирам получения уравнений-следствий.

Как указывалось выше, выполняя равносильные преобразования уравне­ний, необходимо учесть ОДЗ данного уравнения — это и есть первый о р и - ентир для выполнения равносильных преобразований уравнений.

По определению равносильности уравнений необходимо гарантировать, чтобы каждый корень первого уравнения был корнем второго и наоборот — каждый корень второго уравнения был корнем первого. Для первой части этого требования мы уже выделили общий ориентир: достаточно гарантиро­вать сохранение правильности равенства при переходе от первого уравнения ко второму (с. 49).

Но тогда, чтобы выполнить вторую часть этого требования, достаточно второе уравнение рассмотреть как верное равенство (то есть взять такое значение переменной, которое является корнем второго уравнения) и га­рантировать, что при переходе к первому верное равенство сохраняется (этот корень остается и корнем первого уравнения). Фактически из опреде­ления равносильности уравнений получаем, что каждое из равносильных уравнений является следствием другого уравнения). Таким образом, при

выполнении равносильных преобразований мы должны гарантировать со­хранение правильности равенства на каждом шаге решения не только при прямых, но и при обратных преобразованиях — это и является вторым о р и - ен т и р ом для решения уравнений с помощью равносильных преобразова­ний. (Соответствующие ориентиры схематически представлены в пункте 5 табл. 6.)

Например, чтобы решить с помощью равносильных преобразований урав-

x2 -1

-------  = 0, достаточно учесть его ОДЗ: х + 1 Ф 0 и условие равенства

x+1

дроби нулю (дробь равна нулю тогда и только тогда, когда числитель дроби равен нулю, а знаменатель не равен нулю). Также следует обратить внима­ние на то, что на ОДЗ все необходимые преобразования можно выполнить как в прямом, так и в обратном направлениях с сохранением правильности равенства.

Запись решения в этом случае может быть такой:

x2 -1

= 0. ► ОДЗ: х + 1 Ф 0. Тогда х2 —1 = 0. Отсюда х = 1 (удовлетворяет

x+1

условию ОДЗ) или х = —1 (не удовлетворяет условию ОДЗ). Ответ: 1. < Для выполнения равносильных преобразований уравнений можно также пользоваться специальными теоремами о равносильности. В связи с уточ­нением определения равносильности уравнений обобщим также формули­ровки простейших теорем о равносильности, известных из курса алгебры

7  класса.

Теорема 1. Если из одной части уравнения перенести в другую часть слагаемые с противоположным знаком, то получим уравне­ние, равносильное заданному (на любом множестве).

 

Теор е м а 2. Если обе части уравнения умножить или разделить
на одно и то же число, не равное нулю (или на одну и ту же функ-
цию, которая определена и не равна нулю на ОДЗ заданного урав-
нения), то получаем уравнение, равносильное заданному (на ОДЗ
исходного).

Обоснование этих теорем полностью аналогично обоснованию ориентиров для равносильных преобразований данного уравнения.

Замечание. Для обозначения перехода от данного уравнения к равно­сильному ему уравнению можно применять специальный значок ^, но его использование при записи решений не является обязательным. (Хотя ино­гда мы будем им пользоваться, чтобы подчеркнуть, что были выполнены именно равносильные преобразования.)

Причина

При каких преобразованиях это может происходить

Пример неправильного (или неполного) решения

 

1. Появление посторонних корней

Получение

уравнений-

следствий:

1.

Приведение по­добных членов

x2 + л/ x - 2 = 6x + >/ x - 2. Перенесем из правой части уравнения в левую слагаемое \tx - 2 с противоположным знаком и приведем подобные члены.

Получим х2 — 6х = 0, х1 = 0, х2 = 6

 

а) переход

к уравнению, ОДЗ которого шире, чем ОДЗ заданного уравнения;

2.

Приведение обе­их частей урав­нения к обще­му знаменателю (при сокращении знаменателя)

4 + 7 = 4 x + 2 x + 3 x2 + 5x + 6 Умножим обе части уравнения на общий знаменатель всех дробей (х + 2)(х + 3).

Получим

4 (х + 3) + 7 (х + 2) = 4,

11х = —22, х = —2

 

 

3.

Возведение обеих частей иррацио­нального уравне­ния в квадрат

yj2x +1 =Vx. 2х + 1 = х,

х = —1

 

б) выполне­ние преоб­разований, при которых происходит неявное умно­жение на нуль;

Умножение обеих частей уравнения на выражение с пере­менной

х2 + х + 1 = 0. Умножим обе части уравнения на х —1.

(х — 1)(х2 + х + 1) = 0. Получим х3 — 1 = 0, х = 1

 

 

 

Где ошибка

Как получить правильное (или полное) решение

Пример правильного (или полного) решения

при решении уравнения

 

х1 = 0 не является корнем заданного уравнения

Выполнить про­верку подстановкой корней в заданное уравнение

x2 + V x - 2 = 6x + >/ x - 2.

► х2 — 6х = 0, х1 = 0, х2 = 6. Проверка показывает, что х1 = 0 — посторонний корень, х2 = 6 — корень.

Ответ: 6. <1

 

х = —2 не является корнем заданного уравнения

4 ! 7 = 4 x + 2 x + 3 x2 + 5x + 6

► 4 (x + 3) + 7 (x + 2) = 4;

11x = —22, x = —2. Проверка показывает, что х = -2 — посторонний корень. Ответ: корней нет. <

 

х = —1 не является корнем заданного уравнения

yj2x +1 = -Jx.

► 2x + 1 = x, х = —1.

Проверка показывает, что х = —1 — посторонний корень. Ответ: корней нет. <

 

х = 1 не является корнем заданного уравнения

В данном уравнении не было необходимости умножать на х — 1.

х2 + х + 1 = 0.

► D = —3 < 0.

Ответ: корней нет. <

Если применить умножение обеих частей уравнения на х — 1, то проверка показывает, что х = 1 — посторонний ко­рень, то есть уравнение не име­ет корней.

Причина

При каких преобразованиях это может происходить

Пример неправильного (или неполного) решения

 

1. Появление посторонних корней

в) применение к обеим ча­стям урав­нения функ­ции, которая не является возрастаю­щей или убы­вающей.

Возведение обеих частей уравнения в четную степень или применение к обеим частям уравнения тригонометрических функций (см. с. 272)

х — 1 = 2х + 1. Возведем обе части уравнения в квадрат:

(х — 1)2 = (2х + 1)2. Получим 3х2 + 6х = 0, х1 = 0, х2 = —2

 

2. Потеря корней

Явное или неяв­ное сужение ОДЗ заданного урав­нения, в частно­сти выполнение преобразований, в ходе которых происходит не­явное деление на нуль

1. Деление обеих ча­стей уравнения на выражение с пе­ременной

х2 = х.

Поделив обе части уравнения на х, получим

х = 1

 

2. Сложение, вычи­тание, умноже­ние или деление обеих частей уравнения на выражение, ОДЗ которого уже, чем ОДЗ задан­ного уравнения

х2 = 1.

Если к обеим частям уравнения прибавить \[x, то получим уравнение

x2 + yfx = 1 + yfx, у которого только один корень х = 1