Деление многочлена на многочлен с остатком

Сложение и умножение многочленов от одной переменной выполняется с помощью известных правил сложения и умножения многочленов. В ре­зультате выполнения действий сложения или умножения над многочлена­ми от одной переменной всегда получаем многочлен от той же переменной.

Из определения произведения двух многочленов вытекает, что старший член произведения двух многочленов равен произведению старших членов множителей, а свободный член произведения равен произведению свободных членов множителей. Отсюда получаем, что степень произведения двух многочленов равна сумме степеней множителей.

При сложении многочленов одной степени можно получить многочлен этой же степени или многочлен меньшей степени.

Например, 3 - 5х2 + 3х + 1 + (-2х3 + 5х2 + х + 5) = 4х + 6.

При сложении многочленов разных степеней всегда получаем многочлен, степень которого равна большей из степеней слагаемых.

Например, (3х3 - 5х + 7) + (х2 + 2х + 1) = 3х3 + х2 - 3х + 8.

Деление многочлена на многочлен определяется аналогично делению це­лых чисел. Напомним, что число а делится на число b (b≠  0), если суще­ствует такое число q, что а = b • q.

Определение 3. Многочлен А (х) делится на многочлен В (х) (где В (х) —не нулевой многочлен), если существует такой многочлен Q (x), что

А (х) = В (х) • Q (x).

Как и для целых чисел, операция деления многочлена на многочлен вы­полняется не всегда, поэтому во множестве многочленов вводится операция деления с остатком

Разделить с остатком многочлен А (х) на многочлен В (х) (где В (х) — не нулевой многочлен) — это означает найти такую пару многочленов Q (x) и R (x), что А ) = В (х) • Q (x) + R (x), причем степень остатка R (x) меньше степени делителя В (х) (в этом случае многочлен Q (х) называют неполным частным.)

Например, поскольку х3 - 5х + 2 = (х2 - 5) х + 2, то при делении много­члена х3 - 5х + 2 на многочлен х2 - 5 получаем неполное частное х и остаток 2.

Иногда деление многочлена на многочлен удобно выполнять «уголком», как и деление многозначных чисел, пользуясь следующим алгоритмом:

Алгоритм. При делении многочленов от одной переменной переменные в делимом и в делителе размещают по убыванию степеней и делят старший член де­лимого на старший член делителя. Потом полученный результат умножают на делитель, и это произведение вычитают из делимого. С полу­ченной разностью выполняют аналогичную операцию: делят ее старший член на старший член делителя и полученный результат снова умножа­ют на делитель и т. д. Этот процесс продолжают до тех пор, пока не по­лучится в остатке 0 (если один многочлен делится на другой) или пока в остатке не получится многочлен, степень которого меньше степени делителя.

Пример. Разделим многочлен А (х) = х4 - 5х3 + х2 + 8х - 20 на многочлен B(x)= х2 - 2х+3

Докажем, что полученный результат действительно является результа­том деления А (х) на В (х) с остатком.

Если обозначить результат выполнения первого шага алгоритма через f1 (x), второго шага — через f2 (x), третьего — через f3 (x), то операцию деления, выполненную выше, можно записать в виде системы равенств:

f1(x) = А (х) - х2 • В (х);                             (1)

f2 (x) = A (x) - (-) • В (х);                       (2)

f3 (x) = f2(x) - (-8) • В (х).                         (3)

Сложим почленно равенства (1), (2), (3) и получим

А (х) = (х2 - 3х - 8) • В (х) + f3 (x).                      (4)

Учитывая, что степень многочлена f3 (x) = х + 4 меньше степени делителя

В (х) = х2 - 2х + 3, обозначим f3 (x) = R (x) (остаток), а х2 - 3х - 8 = Q (x) (неполное частное). Тогда из равенства (4) имеем: А (х) = В (х) - Q (x) + R (x), то есть х4 - 5х3 + х2 + 8х - 20 = (х2 - 2х + 3)(х2 - 3х - 8) + х + 4, а это и означает, что мы разделили А (х) на В (х) с остатком.

Очевидно, что приведенное обоснование можно провести для любой пары многочленов А (х) и В (х) в случае их деления столбиком. Поэтому описанный выше алгоритм позволяет для любых делимого А (х) и делителя В (х) (где В (х) — не нулевой многочлен) найти неполное частное Q (x) и остаток R (x).

То есть, имеет место следующая теорема.

Теорема 4. Для любой пары многочленов А (х) и В (х) (где В (х) — не нулевой многочлен) существует и притом единственная пара многочленов
Q(x) и R(x), такая, что А(х)=В(х)*Q(x) + R(x), причем сте-
пень R (x) меньше степени В (х) (или R (x) — нулевой многочлен).

Отметим, что в случае, когда степень делимого А (х) меньше степени дели­теля В (х), считают, что неполное частное Q (x) = 0, а остаток R (x) = А (х).

Упражнения

1.Выполните деление многочлена на многочлен:

1)3х3 - 5х2 + 2х - 8 на х - 2;               2)  х10 + 1 на х2 + 1;

3)х5 + 3х3 + 8х - 6 на х2 + 2х + 3.

2. Выполните деление многочлена на многочлен с остатком:

1)4х4 - 2х3 + х2 - х + 1 на x2 + x + 2;

2)х5 + х4 + х3 + х2 + 1 на х2 - х - 2.

3.При каких значениях а и b многочлен А (х) делится без остатка на мно­гочлен В(х)?

1)А (х) = х3 + ах + b, В (х) = х2 + 5х + 7;

2)А (х) = 2х3 - 5х2 + ах + b, В (х) = х2 - 4;

3)А (х) = х4 - х3 + х2 - ах + b, В (х) = х2 - х + 2.

4.Найдите неполное частное и остаток при делении многочлена А(х) на многочлен В(х) методом неопределенных коэффициентов:

1)А (х) = х3 + 6х2 + 11х + 6, В (х) = х2 - 1;

2)А (х) = х3 - 19х - 30, В (х) = х2 + 1.