Алгебраические неравенства. Подготовка к ЕГЭ.

Универсальный метод решения алгебраических неравенств заключается в приведении их с помощью равносильных преобразований к системам или совокупностям легко решаемых рациональных неравенств или уравнений. Этот метод школьники осваивают, начиная с 9-го класса. В 10 – 11 классах средней школы, рассматривая кроме алгебраических еще тригонометрические, показательные и логарифмические уравнения и неравенства, как правило, с помощью замен или других рассуждений удается решение свести к исследованию равносильных систем или совокупностей простейших уравнений и неравенств.

Понятия неравенства с переменной и его решений

Если два выражения с переменной соединить одним из знаков >, <, <, то получаем неравен­ство с переменной.

Аналогично уравнению, неравенство с переменной (например, со зна­ком >) чаще всего понимают как аналитическую запись задачи о нахож­дении тех значений аргументов, при которых значение одной из заданных функций больше, чем значение другой заданной функции. Поэтому в общем виде неравенство с одной переменной х (например, для случаев «больше») записывают так: f(x)>g (*).

Напомним, что решением неравенства называется значение переменной, которое обращает это неравенство в верное числовое неравенство.

Решить неравенство — значит найти все его решения (и обосновать, что других решений нет) или доказать, что решений нет.

Например, решениями неравенства Зх < 6 являются все значения х < 2, для неравенства х2 > -1 решениями являются все действительные числа (R), а неравенство х2 <-1 не имеет решений, поскольку значение х2 не может быть отрицательным числом.

Область допустимых значений (ОДЗ)

Область допустимых значений (ОДЗ) неравенства определяется аналогично ОДЗ уравнения. Если задано неравенство f (х) > g(x), то общая область определения функций f(x) и g(x) называется областью допустимых значений этого неравенства (иногда используются также термины «область определения неравенства* или «множество допустимых значений неравенства*).

Например, для неравенства х2 < х областью допустимых значений являются все действительные числа (это можно записать, например, так: ОДЗ: R), поскольку функции f(x) = х2 и g(x) = х имеют области определения R.

Понятно, что каждое решение заданного неравенства входит как в область определения функции f(x), так и в область определения функции g(x) (иначе мы не сможем получить верное числовое неравенство). Таким образом, каждое решение неравенства обязательно входит в ОДЗ этого неравенства. Это позволяет в некоторых случаях применить анализ ОДЗ неравенства для его решения.

Равносильные неравенства

С понятием равносильности неравенств вы знакомы еще из курса алгебры 9 класса. Как и для случая равносильных уравнений, равносильность неравенств мы будем рассматривать на опреде­ленном множестве.

Два неравенства называются равносильными на некотором мно­жестве, если на этом множестве они имеют одни и те же реше­ния, то есть каждое решение первого неравенства является реше­нием второго и, наоборот, каждое решение второго неравенства является решением первого.

Договоримся, что в дальнейшем все равносильные преобразования не­равенств будем выполнять на ОДЗ заданного неравенства. Укажем, что в том случае, когда ОДЗ заданного неравенства является множество всех действительных чисел, мы не всегда будем его записывать (как не записы­вали ОДЗ при решении линейных или квадратных неравенств). И в других случаях главное — не записать ОДЗ при решении неравенства, а действи­тельно учесть ее при выполнении равносильных преобразований заданного неравенства.

Общие ориентиры выполнения равносильных преобразований неравенств аналогичны соответствующим ориентирам выполнения равносильных пре­образований уравнений.

Как указывалось выше, выполняя равносильные преобразования нера­венств, необходимо учитывать ОДЗ заданного неравенства — это и есть первый ориентир для выполнения равносильных преобразований нера­венств.

По определению равносильности неравенств необходимо обеспечить, что­бы каждое решение первого неравенства было решением второго, и наобо­рот, каждое решение второго неравенства было решением первого. Для это­го достаточно обеспечить сохранение верного неравенства на каждом шаге решения не только при прямых, но и при обратных преобразованиях. Это и есть второй ориентир для решения неравенств с помощью равносиль­ных преобразований. Действительно, каждое решение неравенства обращает его в верное числовое неравенство, и если верное неравенство сохраняется, то решение каждого из неравенств будет также и решением другого, таким образом, неравенства будут равносильны.

Например, чтобы решить с помощью равносильных преобразований не­равенство

достаточно учесть его ОДЗ: х + 1  не не равно 0 и условие положительности дроби (дробь будет положительной тогда и только тогда, когда числитель и зна­менатель дроби имеют одинаковые знаки), а также учесть, что на ОДЗ все необходимые преобразования можно выполнить как в прямом, так и в об­ратном направлении с сохранением верного неравенства.

Кроме выделенных общих ориентиров, для выполнения равносильных преобразований неравенств можно также пользоваться специальными теоремами о равносильности. В связи с уточнением определения равносильности неравенств обобщим также формулировки простейших теорем о равносильности неравенств, известных из курса алгебры 9 класса.

1. Если из одной части неравенства перенести в другую часть слагаемые с противоположным знаком, то получим неравенство, равносильное заданному (на любом множестве).

2. Если обе части неравенства умножить или разделить на одно и то же положительное число (или на одну и ту же функцию, которая определена и положительна на ОДЗ заданного неравенства), не изменяя знак неравенства, то получим неравенство, равносильное заданному (на ОДЗ заданного).

3. Если обе части неравенства умножить или разделить на одно и то же отрицательное число (или на одну и ту же функцию, которая определена и отрицательна на ОДЗ заданного неравенства) и изменить знак неравенства на противоположный, то получим неравенство, равносильное заданному (на ОДЗ заданного).

Обоснование этих теорем проводится с использованием основных свойств числовых неравенств и полностью аналогично обоснованию ориентиров для равносильных преобразований заданного неравенства.

Замечание. Для обозначения перехода от заданного неравенства к неравенству, равносильному ему, можно применять специальный значок <=>, но его использование при оформлении решений не является обязательным.