D – множество нечетных однозначных чиселRДанные отношения между множествами на кругах Эйлера можно представить так A={ ⃰ ; •; ; ۞; ۩} и B={•;۞; ۩}40. Данные отношения между множествами на кругах Эйлера можно представить так D – множество равнобедренных треугольников(7; ∞)Данные отношения между множествами на кругах Эйлера можно представить так [0;9]B=(-2;1)не будет ни одной точки, удовлетворяющей данному уравнениюB={k;l;m}А={1;3;5}, B={2;4;6;9}, C={5;7;9}A={x|x€N˄-2≤x≤7} и B={x|x€Z˄0<x<8}B=[-2;1]B=(10; ∞)D – множество чисел, кратных 3B={d;f;c;b;a}A={x|x€R˄x<6} и B={x|x€R˄x≤8}[1;7]B={b;d}B=ǾB=ǾB={1;2}[3;7]B=(-∞;3]В={-1;0}Данные отношения между множествами на кругах Эйлера можно представить так
Задача уже была решена ранее !
Правила
Показать результат
Правила
Нажать кнопку "Приступить". После загрузки программы экран разобьется на три части. В левой располагается набор условий. Справа вверху-набор заданий, а внизу формируется условие конкретной задачи. Для этого с помощью мыши выбираются номера из набора условий. Готовые условия можно изменить кнопкой "Очистить". Решив задачу, с помощью полосы прокрутки находят набор ответов, выбирают верный и щелкают мышью. Для выхода из программы нажимают "Показать результат".
Приступить
Задание выполнено
Если вы хотите завершить выполнение задания и посмотреть результат нажмите "Завершить", иначе нажмите "Отмена".