Трибунская Виктория

История тригонометрических функций

Самой первой тригонометрической функцией была хорда, соответствующая данной дуге. Для этой функции были построены первые тригонометрические таблицы (II в. до н. э.), нужные для астрономии.
Впервые в истории науки в период V-XII веков индийские математики и астрономы вместо полной хорды стали рассматривать половину хорды, которая соответствует современному понятию синуса. Величину половины хорды они назвали “архиджива”, что означало “половина тетивы лука”. Кроме sin x, индийцы рассматривали также величину 1 – cos x, которую они называли “комаджива”, и величину cos x – “котиджива”.
Понятие таких тригонометрических функций, как тангенс, котангенс, секанс и косеканс, определил совершенно строго, исходя из рассмотрения тригонометрического круга, иранский математик Абу-ль-Вефа. Современные названия этих функций были даны в период с XV по XVII век европейскими учеными. Так, термин “тангенс” с латинского “касательная” был введен в XV веке основателем тригонометрии в Европе Региомонтаном. В XVI веке Финк вводит термин “секанс”. В XVII веке помощник изобретателя десятичных логарифмов Бриггса ученый Гюнтер вводит название “косинус” и “котангенс”, причем приставка “ко” (co) обозначает дополнение (complementum).
Современные обозначения синуса и косинуса знаками sin x и cos x были впервые введены в 1739 году И. Бернулли в письме к петербургскому математику Л. Эйлеру. Последний пришел к выводу, что эти обозначения весьма удобны, и стал употреблять их в своих математических работах. Кроме того, Эйлер вводит следующие сокращенные обозначения тригонометрических функций угла x: tang x, cot x, sec x, cosec x. Далее Эйлер установил связь тригонометрических функций с показательными и дал правило для определения знаков функций в различных четвертях круга. Эйлер установил современную точку зрения на тригонометрические как функции числового аргумента.
В1770 г. появилось и удерживается до наших дней название Тригонометрические функции. Его ввел Г. С. Клюгель в работе “Аналитическая тригонометрия”.

 Определение и графики тригонометрических функций

 

Величины углов (аргументы функций): α, x 
Тригонометрические функции: sinα, cosα, tanα, cotα, secα, cscα
Множество действительных чисел: R 
Координаты точки окружности: x, y 

Радиус круга: r 
Целые числа: k 

1.      Тригонометрические функции представляют собой элементарные функции, аргументом которых является угол. С помощью тригонометрических функций описываются соотношения между сторонами и острыми углами в прямоугольном треугольнике. Области применения тригонометрических функций чрезвычайно разнообразны. Так, например, любые периодические процессы можно представить в виде суммы тригонометрических функций (ряда Фурье). Данные функции часто появляются при решении дифференциальных и функциональных уравнений.

2.      К тригонометрическим функциям относятся следующие 6 функций: синускосинустангенс,котангенссеканс и косеканс. Для каждой из указанных функций существует обратная тригонометрическая функция.

3.      Геометрическое определение тригонометрических функций удобно ввести с помощью единичного круга. На приведенном ниже рисунке изображен круг радиусом r=1. На окружности обозначена точка M(x,y). Угол между радиус-вектором OM и положительным направлением оси Ox равен α.

4.      Синусом угла α называется отношение ординаты y точки M(x,y) к радиусу r: 
sinα=y/r. 
Поскольку r=1, то синус равен ординате точки M(x,y).

5.      Косинусом угла α называется отношение абсциссы x точки M(x,y) к радиусу r: 
cosα=x/r 

6.      Тангенсом угла α называется отношение ординаты y точки M(x,y) к ee абсциссе x: 
tanα=y/x,x≠0 

7.      Котангенсом угла α называется отношение абсциссы x точки M(x,y) к ее ординате y: 
cotα=x/y,y≠0 

8.      Секанс угла α − это отношение радиуса r к абсциссе x точки M(x,y): 
secα=r/x=1/x,x≠0 

9.      Косеканс угла α − это отношение радиуса r к ординате y точки M(x,y): 
cscα=r/y=1/y,y≠0 

10.  В единичном круге проекции x, y точки M(x,y) и радиус r образуют прямоугольный треугольник, в котором x,y являются катетами, а r − гипотенузой. Поэтому, приведенные выше определения тригонометрических функций в приложении к прямоугольному треугольнику формулируются таким образом: 
Синусом угла α называется отношение противолежащего катета к гипотенузе. 
Косинусом угла α называется отношение прилежащего катета к гипотенузе. 
Тангенсом угла α называется противолежащего катета к прилежащему. 
Котангенсом угла α называется прилежащего катета к противолежащему. 
Секанс угла α представляет собой отношение гипотенузы к прилежащему катету. 
Косеканс угла α представляет собой отношение гипотенузы к противолежащему катету. 

11.  График функции синус 
y=sinx, область определения: x∈R, область значений: −1≤sinx≤1 

12.  График функции косинус 
y=cosx, область определения: x∈R, область значений: −1≤cosx≤1 

13.  График функции тангенс 
y=tanx, область определения: x∈R,x≠(2k+1)π/2, область значений: −∞<tanx<∞ 

14.  График функции котангенс 
y=cotx, область определения: x∈R,x≠kπ, область значений: −∞<cotx<∞ 

15.  График функции секанс 
y=secx, область определения: x∈R,x≠(2k+1)π/2, область значений:secx∈(−∞,−1]∪[1,∞) 

16.  График функции косеканс 
y=cscx, область определения: x∈R,x≠kπ, область значений: cscx∈(−∞,−1]∪[1,∞) 

 

 

Где применяется тригонометрия

Тригонометрические вычисления применяются практически во всех сферах жизнедеятельности людей. Следует отметить применение в таких областях как: астрономия, физика, природа, биология, музыка, медицина и многие другие.

Тригонометрия в астрономии:

Потребность в решении треугольников раньше всего обнаружилась в астрономии; поэтому, в течение долгого времени тригонометрия развивалась и изучалась как один из разделов астрономии.

Потребность в решении треугольников раньше всего обнаружилась в астрономии; поэтому, в течение долгого времени тригонометрия развивалась и изучалась как один из разделов астрономии.

Составленные Гиппархом таблицы положений Солнца и Луны позволили предвычислять моменты наступления затмений (с ошибкой 1—2 ч). Гиппарх впервые стал использовать в астрономии методы сферической тригонометрии. Он повысил точность наблюдений, применив для наведения на светило крест нитей в угломерных инструментах — секстантах и квадрантах. Ученый составил огромный по тем временам каталог положений 850 звезд, разделив их по блеску на 6 степеней (звездных величин). Гиппарх ввел географические координаты — широту и долготу, и его можно считать основателем математической географии. (ок. 190 до н. э. — ок. 120 до н. э.)

Достижения Виета в тригонометрии 
Полное решение задачи об определении всех элементов плоского или сферического треугольников по трем данным элементам, важные разложения sin пх и cos пх по степеням cos х и sinx. Знание формулы синусов и косинусов кратных дуг дало возможность Виету решить уравнение 45-й степени, предложенное математиком А. Рооменом; Виет показал, что решение этого уравнения сводится к разделению угла на 45 равных частей и что существуют 23 положительных корня этого уравнения. Виет решил задачу Аполлония с помощью линейки и циркуля.
Решение сферических треугольников- одна из задач астрономии Вычислять стороны и углы любого сферического треугольника по трем подходящим образом заданным сторонам или углам позволяют следующие теоремы: (теорема синусов) (теорема косинусов для углов) (теорема косинусов для сторон).

 

Тригонометрия в физике:

В окружающем нас мире приходится сталкиваться с периодическими процессами, которые повторяются через одинаковые промежутки времени. Эти процессы называются колебательными. Колебательные явления различной физической природы подчиняются общим закономерностям и описываются одинаковыми уравнениями. Существуют разные виды колебательных явлений.

Гармоническое колебание — явление периодического изменения какой-либо величины, при котором зависимость от аргумента имеет характер функции синуса или косинуса. Например, гармонически колеблется величина, изменяющаяся во времени следующим образом:

Где х — значение изменяющейся величины, t — время, А — амплитуда колебаний, ω — циклическая частота колебаний,   — полная фаза колебаний, r  — начальная фаза колебаний.

Обобщенное гармоническое колебание в дифференциальном виде x’’ + ω²x = 0.

Механические колебания . Механическими колебаниями называют движения тел, повторяющиеся точно через одинаковые промежутки времени. Графическое изображение этой функции дает наглядное представление о протекании колебательного процесса во времени. Примерами простых механических колебательных систем могут служить груз на пружине или математический маятник.

Тригонометрия в природе.

Мы часто задаем вопрос «Почему мы иногда видим то, чего нет на самом деле?». Для исследования предложены следующие вопросы: «Как возникает радуга? Северное сияние?», «Что такое оптические иллюзии?» ,«Как тригонометрия может помочь найти ответы на эти вопросы?».

Впервые теория радуги была дана в 1637 году Рене Декартом. Он объяснил радугу, как явление, связанное с отражением и преломлением света в дождевых каплях.

Северное сияние Проникновение в верхние слои атмосферы планет заряженных частиц солнечного ветра определяется взаимодействием магнитного поля планеты с солнечным ветром.

Сила, действующая на движущуюся в магнитном поле заряженную частицу называется силой Лоренца. Она пропорциональна заряду частицы и векторному произведению поля и скорости движения частицы.

Многофункциональная тригонометрия

·         Американские ученые утверждают, что мозг оценивает расстояние до объектов, измеряя угол между плоскостью земли и плоскостью зрения.

·         К тому же в биологии используется такое понятие как синус сонный, синус каротидный и венозный или пещеристый синус.

·         Тригонометрия играет важную роль в медицине. С ее помощью иранские ученые открыли формулу сердца - комплексное алгебраически-тригонометрическое равенство, состоящее из 8 выражений, 32 коэффициентов и 33 основных параметров, включая несколько дополнительных для расчетов в случаях аритмии.

Тригонометрия и тригонометрические функции в медицине и биологии.

·         Одно из фундаментальных свойств живой природы - это цикличность большинства происходящих в ней процессов.

·         Биологические ритмы, биоритмы – это более или менее регулярные изменения характера и интенсивности биологических процессов.

·         Основной земной ритм – суточный.

·         Модель биоритмов можно построить с помощью тригонометрических функций.

Тригонометрия в биологии

Какие биологические процессы связаны с тригонометрией?

·         Тригонометрия играет важную роль в медицине. С ее помощью иранские ученые открыли формулу сердца - комплексное алгебраически-тригонометрическое равенство, состоящее из 8 выражений, 32 коэффициентов и 33 основных параметров, включая несколько дополнительных для расчетов в случаях аритмии.

·         Биологические ритмы, биоритмы связаны с тригонометрией

Связь биоритмов с тригонометрией

·         Модель биоритмов можно построить с помощью графиков тригонометрических функций. Для этого необходимо ввести дату рождения человека ( день, месяц, год ) и длительность прогноза

Движение рыб в воде происходит по закону синуса или косинуса, если зафиксировать точку на хвосте, а потом рассмотреть траекторию движения.

При полёте птицы траектория взмаха крыльев образует синусоиду.

Возникновение музыкальной гармонии

·         Согласно дошедшим из древности преданиям, первыми, кто попытался сделать это, были Пифагор и его ученики.

·         Частоты, соответствующие одной и той же ноте в первой, второй и т.д. октавах, относятся, как 1:2:4:8…

·         диатоническая гамма 2:3:5

Тригонометрия в архитектуре

·         Детская школа Гауди в Барселоне

·         Страховая корпорация Swiss Re в Лондоне

·         Феликс Кандела Ресторан в Лос-Манантиалесе

 

Значения тригонометрических функций

Ключевые слова: радиан, радианная мера угла, тригонометрическая окружность, знаки тригонометрических функций

В геометрии угол определяется как часть плоскости, ограниченная двумя лучами. 
При таком определении получаются углы от 0° до 180°. Однако угол можно рассматривать и как меру поворота
Возьмем на координатной плоскости окружность радиуса R с центром O в начале координат. 
Пусть одна сторона угла  с вершиной в начале координат O идет по оси абсцисс, а сам угол положительный, то есть, по определению, отложен по направлению против часовой стрелки от положительного направления оси абсцисс. 
Из геометрии известно, что отношение длины дуги l , на которую опирается этот угол, к радиусу R этой окружности не зависит от самого радиуса. Поэтому это отношение может быть выбрано характеристикой и мерой данного угла: =lR.

Такая мера называется радианной мерой угла и используется наравне с угловой. 
Говорят, что угол равен определенному числу радиан. 
Ясно, что угол в один радиан опирается на длину дуги окружности, равную её радиусу. 
В самом деле: =RR=1 радиан. Обозначение радиана – «рад». 
Так как длина всей окружности радиуса R равна 2R , то всей окружности соответствует угол =R2R=2 радиан. Поскольку вся окружность содержит 360°, то один радиан соответствует 2360=180 градусов: 
1рад=1805717. И наоборот, 1=180рад.

Значит, можно написать следующие формулы перехода от градусного измерения к радианному: 
=180рад 

и от радианного измерения к градусному: 
=180 .

Обозначение «рад» при записи часто опускают и вместо, например, 180° =  рад пишут просто 180° = .

Пользуясь этими формулами, легко получить следующую таблицу перевода некоторых наиболее часто встречающихся углов из градусной меры в радианную и обратно.

Угол, градусы

30°

45°

60°

90°

180°

270°

360°

Угол, радианы

0

6

4

3

2

 

23

2

Так как, синус по определению равен ординате точки на единочной окружности, а косинус - абсциссе, то знаки тригонометрических функций по четвертям будут такими:

 

I

II

III

IV

sin

+

+

-

-

cos

+

-

-

+

tg

+

-

+

-

ctg 

+

-

+

-

Вычисление тригонометрических функций некоторых углов.

       

 

Тригонометрические функции числового и углового аргументов

 

Тригонометрические функции числового аргумента.

Тригонометрические функции числового аргумента t  – это функции вида y = cos t, 
y = sin t, y = tg t, y = ctg t.

С помощью этих формул через известное значение одной тригонометрической функции можно найти неизвестные значения других тригонометрических функций.

Пояснения.

1) Возьмем формулу cos2 t + sin2 t = 1 и выведем с ее помощью новую формулу.

Для этого разделим обе части формулы на cos2 t (при t ≠ 0, то есть t ≠ π/2 + πk). Итак:

  cos2 t        sin2 t             1
——— + ———  =  ———
 cos2 t        cos2 t          cos2 t

Первое слагаемое равно 1. Мы знаем, что отношение синуса к конисусу – это тангенс, значит, второе слагаемое равно tg2 t. В результате мы получаем новую (и уже известную вам) формулу:

                                                          1                        π
                                  1 + tg2 t  =  ———,     где t ≠ — + πkk – целое число.
                                                       cos2 t                    2

 

2) Теперь разделим cos2 t + sin2 t = 1 на sin2 t (при t ≠ πk):

  cos2 t        sin2 t             1
——— + ———  =  ———,   где t ≠ πk + πkk – целое число
  sin2 t         sin2 t          sin2 t

Отношение косинуса к синусу – это котангенс. Значит:

                                                          1
                                 1 + ctg2 t  =  ———,   где t ≠ πk, k – целое число.
                                                        sin2 t


Зная элементарные основы математики и выучив основные формулы тригонометрии, вы легко сможете самостоятельно выводить большинство остальных тригонометрических тождеств. И это даже лучше, чем просто зазубривать их: выученное наизусть быстро забывается, а понятое запоминается надолго, если не навсегда. К примеру, необязательно зазубривать, чему равна сумма единицы и квадрата тангенса. Забыли – можно легко вспомнить, если вы знаете самую простую вещь: тангенс – это отношение синуса к косинусу. Примените вдобавок простое правило сложения дробей с разными знаменателями – и получите результат:

                           sin2 t         1         sin2 t          cos2 t + sin2 t             1
1 + tg2 t  =  1 + ———  =  —  +  ———  =  ——————  =  ———
                          cos2 t         1          cos2 t               cos2 t                cos2 t

Точно так же легко можно найти сумму единицы и квадрата котангенса, как и многие другие тождества.

 

Тригонометрические функции углового аргумента.

В функциях  у = cos t, у = sin t, у = tg t, у = ctg t переменная t может быть не только числовым аргументом. Ее можно считать и мерой угла – то есть угловым аргументом.

С помощью числовой окружности и системы координат можно легко найти синус, косинус, тангенс, котангенс любого угла. Для этого должны быть соблюдены два важных условия: 
1) вершиной угла должен быть центр окружности, который одновременно является центром оси координат;

2) одной из сторон угла должен быть положительный луч оси x.

В этом случае ордината точки, в которой пересекаются окружность и вторая сторона угла, является синусом этого угла, а абсцисса этой точки – косинусом данного угла.

Пояснение. Нарисуем угол, одна сторона которого – положительный луч оси x, а вторая сторона выходит из начала оси координат (и из центра окружности) под углом 30º (см.рисунок). Тогда точка пересечения второй стороны с окружностью соответствует π/6. Нам известны ордината и абсцисса этой точки. Они же являются косинусом и синусом нашего угла:

   √3       1
 ——; ——
    2        2

  А зная синус и косинус угла, вы уже легко сможете найти его тангенс и котангенс.

Таким образом, числовая окружность, расположенная в системе координат, является удобным способом найти синус, косинус, тангенс или котангенс угла.

 

Но есть более простой способ. Можно и не рисовать окружность и систему координат. Можно воспользоваться простыми и удобными формулами:

                                                  πα
                             sin αº = sin ——
                                                 180

                                                  πα
                            cos αº = cos ——
                                                  180

Пример: найти синус и косинус угла, равного 60º.

Решение:

                        π · 60                π         √3
sin 60º  =  sin ———  =  sin —— = ——
                         180                  3          2

                           π        1
cos 60º  =  cos —— = —
                           3        2