Иванова Ольга

Элементы теории множеств

I. Основные понятия и аксиомы теории множеств

За тысячи лет своего существования от простейших представлений о числе и фигуре математики пришла к образованию многих новых понятий и методов. Она превратилась в мощное средство изучения природы и гибкое орудие практики. XX век принес математике новые идеи, теории, расширилась сфера её применения. Математика занимает особое положение в системе наук – её нельзя отнести ни к гуманитарным, ни к естественным наукам. Но она ввела те основные понятия, которые используются в них. Таким понятием является понятие «множество», которое впервые возникло в математике и в настоящее время является общенаучным.

Первый набросок теории множеств принадлежит Бернарду Больцано («Парадоксы бесконечного», 1850). В этой работе рассматриваются произвольные (числовые) множества, и для их сравнения определено понятие взаимно-однозначного соответствия.

В конце 19 века Георг Кантор, немецкий математик, основоположник теории множеств, дал интуитивное определение понятию «множеству» так: «Множество есть многое, мыслимое как единое целое» [1]. Такое определение множества потребовало введения трех символов.

Первый из них должен представлять множество как нечто «единое», т.е. являться представителем самого множества. В качестве такого символа принято применять любую прописную букву какого-либо алфавита: например, обозначать множества прописными буквами латинского алфавита А, В, …, Х или какого-либо другого по соглашению.

Второй символ должен представлять «многое», то есть рассматриваться как элемент множества. В качестве этого символа принято использовать строчные буквы этого же алфавита: a, b, …, z.

Третий символ должен однозначно соотнести элемент множеству. В качестве соответствующего символа определен знак  , который происходит от первой буквы греческого слова (быть). Запись определяет отношение: х есть элемент Х. Для того чтобы указать, что х не есть элемент Х, пишут .

Стоит отметить, что такое определение понятия множества приводит к ряду внутренних противоречий теории – так называемым парадоксам.

Например, рассмотрим парадокс Рассела. Парикмахер
(элемент х), проживающий в некоторой деревне, которые не бреются сами (пусть Х – множество всех тех и только тех жителей данной деревни, которые не бреются сами). Бреет ли парикмахер самого себя? То есть  или ? Ответить на вопрос невозможно, поскольку полагая, например, что ,  сразу приходим к противоречию: , и обратно.

В школьном курсе математики учащимися рассматривается понятие множества, как неопределяемое понятие, под которым понимается совокупность объектов окружающей нас действительности, мыслимую как единое целое. А каждый объект этой совокупности называют элементом данного множества.

На настоящее время существует несколько аксиоматических систем теории множеств:

-Система аксиом Цермело. К этой системе аксиом часто добавляют аксиому выбора, и называют системой Цермело — Френкеля с аксиомой выбора (ZFC).

-Аксиомы теории NBG. Данная система аксиом, предложенная фон Нейманом, впоследствии пересмотренная и упрощенная Робинсоном, Бернайсом и Геделем.

Система Цермело (Z-система) состоит из 7 аксиом. Опишем данные аксиомы в тех рамках, в которых они используются в школьном курсе математики.

Аксиома объемности (Z1). Если все элементы множества А принадлежат множеству В, а все элементы множества В принадлежат также множеству А, то А=В.

Для пояснения данной аксиомы нам необходимо использовать термин «подмножество»: Если каждый элемент множества A является элементом множества Z, то говорят, что А – подмножество Z, и пишут . Символ  именуется «включение». Если не исключается возможность ситуации, когда Z=A, то для того чтобы акцентировать на этом внимание, пишут .

Введя термин «подмножество», сформулируем аксиому 1 в символьном виде: .

Аксиома пары (Z2). Для произвольных a и b существует множество, единственными элементами которого являются {a,b}.

Данная аксиома используется при пояснении декартова произведения множеств, где первоначальным понятием является «упорядоченная пара». Под упорядоченной парой понимают совокупность двух элементов, каждый из которых занимает в записи определенное место. Обозначают упорядоченную пару так: (а,b).

Аксиома суммы (Z3). Для произвольных множеств А и В существует единственное множество С, элементами которого являются все элементы множества А и все элементы множества В и которое никаких других элементов больше не содержит.

В символьном виде аксиому Z3 можно записать так: . На основании данной аксиомы и вытекающих из неё теорем [6] указываются свойства операций множеств, описание которых будут изложены в пункте 3. Аксиомы Z1 и Z2 позволяют нам ввести понятие операции объединения, пересечения, дополнение, разности множеств.

Аксиома степени (Z4). Для любого множества Х существует множество всех его подмножеств Р(Х).

Аксиома бесконечности (Z6). Существует, по крайней мере, одно бесконечное множество – натуральный ряд чисел.

Аксиома выбора (Z7). Для всякого семейства непустых множеств существует функция, которая каждому множеству семейства сопоставляет один из элементов этого множества. Функция называется функцией выбора для заданного семейства.

Стоит отметить важность соответствующих аксиом, так как множества и   отношения между ними являются предметом изучения любой математической дисциплины.

Укажем ещё одно важное открытие в теории множеств - изображение отношений между подмножествами, для наглядного представления [4]. Одним из первых, кто пользовался этим методом, был выдающийся немецкий математик и философ Готфрид Вильгельм Лейбниц. Затем этот метод довольно основательно развил и Леонард Эйлер. После Эйлера этот же метод разрабатывал чешский математик Бернард Больцано. Только в отличие от Эйлера он рисовал не круговые, а прямоугольные схемы. Методом кругов Эйлера пользовался и немецкий математик Эрнест Шредер. Но наибольшего расцвета графические методы достигли в сочинениях английского логика Джона Венна. В честь Венна вместо кругов Эйлера соответствующие рисунки называют иногда диаграммами Венна, а в некоторых книгах их называют также диаграммами Эйлера-Венна [4]. Диаграммы Эйлера-Венна используются не только в математике и логике, но и в менеджменте и других прикладных направлениях.

 II. Отношения между множествами и способы их задания

 

 Итак, под множествами понимается совокупность любых объектов, мыслимая как единое целое. Множества могут состоять их объектов самой различной природы. Их элементами могут быть буквы, атомы, числа, уравнения, точки, углы и т. д. Именно этим объясняется чрезвычайная широта теории множеств и ее приложение к самым разнообразным областям знания (математике, физике, экономике, лингвистике и т. д.).

Считают, что множество определяется своими элементами, то есть множество задано, если о любом объекте можно сказать, принадлежит он этому множеству или не принадлежит. Различают два способа задания множеств.

  1. Множество можно задать с помощью перечисления элементов.

Например, если множество А состоит из элементов а, b, с, то пишут: А = {a, b, c}.

Не каждое множество можно задать с помощью перечисления элементов. Множества, все элементы которых можно перечислить называют конечными. Множества, все элементы которых нельзя перечислить называют бесконечными. Их нельзя задать с помощью перечисления элементов. Исключение составляют бесконечные множества, в которых ясен порядок образование каждого следующего элемента на основе предыдущего. Например, множество натуральных чисел – бесконечное множество. Но известно, что в нем каждое следующее число, начиная со второго, на 1 больше предыдущего. Поэтому можно задать так N = {1, 2, 3, 4, …}.

  1. Множество можно задать с помощью указания характеристического свойства.

Характеристическим свойством данного множества называется свойство, которым обладают все элементы этого множества и не обладают ни один, не принадлежащий ему элемент. Обозначается: А = {x|…}, где после вертикальной черты записывается характеристическое свойство элементов данного множества.

Например, В={1,2,3}. Нетрудно заметить, что каждый элемент множества В – натуральное число, меньшее 4. Именно это свойство элементов множества В является для него характеристическим. В этом случае пишут:  и читают: «Множество В состоит из таких элементов х, что х принадлежит множеству натуральных чисел и х меньше четырех» или множество В состоит из натуральных чисел, меньших 4. Множество В можно задать и по – другому:  или  , и т.д.

При этом, если элемент не подчиняется характеристическому свойству множества, то он данному множеству и не принадлежит. Существуют множества, которые можно задать только с помощью указания характеристического свойства, например, .

Особую важность в школьном курсе математике имеют числовые множества, т.е. множества, элементами которого являются числа [2]. Для названия числовых множеств в математике приняты специальные обозначения:

N = {1, 2, 3, 4, …} – множество натуральных чисел;

Z = {…,-4, -3, -2, -1, 0, 1, 2, 3, 4, …} – множество целых чисел (содержит все натуральные числа и числа, им противоположные);

Q = {x | x=p/q, где p∈Z, q∈N} – множество рациональных чисел (состоит из чисел, допускающих представление в виде обыкновенной дроби);

J – множество иррациональных чисел (множество, состоящее из бесконечных десятичных непериодических дробей, например: 1,23456342…;и др.)

R = (-∞; +∞) – множество действительных чисел.

Множество всех действительных чисел Л. Эйлер изобразил с помощью кругов. (Рис. 1)

Cтоит отметить, что все любые числовые множества можно задать с помощью числового промежутка. (Рис. 2)

Типы числовых промежутков


Множество С, рассмотренное выше, это числовое множество и его можно указать с помощью числового промежутка (Рис. 3)

Рисунок 3 – Числовой промежуток

Укажем еще одно важное правило для задания числовых множеств: Конечные числовые множества изображаются на числовой прямой отдельными точками.

В математике иногда приходится рассматривать множества, содержащие только один элемент, и даже множества, не имеющие ни одного элемента. Множество, не содержащее ни одного элемента, называют пустым. Его обозначают знаком ∅. Например, дано множество A={x|x∈N∧-2<x<0}. Это множество задано своим характеристическим свойством, но оно является пустым, так как в нем нет ни одного элемента, удовлетворяющее данному свойству [3]. Или, например, пусть множество В – это множество всех прямоугольников с неравными диагоналями. То, что свойство «быть прямоугольником с неравными диагоналями» задает пустое множество, составляет утверждение геометрической теоремы: «Во всяком прямоугольнике диагонали равны».

Стоит отметить, когда речь идет о двух и более множествах, то между ними могут быть какие-либо отношения или нет. Если множества находятся в каких-либо отношениях, то речь идет или об отношении равенства или отношении включении.

Множество А включается во множество В, если каждый элемент множества А принадлежит множеству В. Обозначается данное отношение так: A⊂B. Или, по-другому говорят, что множество А является подмножеством множества В.

Множества А и В называются равными, тогда и только тогда, когда каждый элемент множества А принадлежит множеству В и вместе с этим каждый элемент множества В принадлежит множеству А. Обозначается данное отношение так: А=В

Например:

1) A={a,b,c,d} и B={b,d}, эти множества находятся в отношении включения B⊂A, т.к. каждый элемент множества В принадлежит множеству А.

2) M={x|x∈R∧x<6}=(-∞;6) и K{x|x∈R∧x≤8}=(-∞;8], эти множества находятся в отношении включения M⊂K, т.к. каждый элемент множества M принадлежит множеству K (Рис. 4)

 

 Рисунок 4 – Числовой промежуток

 3) A={x|x∈N∧x:2}={2,4,6,8,10,...} и  B={x|x∈N∧x:3}={3,6,9,12,...}, эти два множества не находятся ни в каких отношениях A⊄B, так как во множестве А есть элемент 2, не принадлежащий множеству В

и B⊄A, т.к. во множестве В есть элемент 3, не принадлежащий множеству А.

Следовательно, данные множества не находятся ни в каких отношениях.

 

III. Операции и свойства операций над множествами

 

Опр.1.Пересечением множеств А и В называется операция, результатом которой является множество, состоящее из тех и только тех элементов, которые принадлежат и А и В одновременно. 

                              A∩B={x|x∈A∧x∈B}                                             

Опр.2. Объединением множеств А и В называется операция, результатом которой является множество, состоящее из тех и только тех элементов, которые принадлежат множеству А или множеству В (т.е. хотя бы одному из этих множеств).

                               A∪B={x|x∈A∨x∈B}                                          

Опр.3. Разностью множеств А и В называется операция, результатом которой является множество, состоящее из тех и только тех элементов, которые принадлежат А и не принадлежат В одновременно.

                                  А\ В ={x∈A∧x∉B}                                            

Опр.4. Дополнением множества А до универсального множества называется множество, каждый элемент которого принадлежит универсальному и не принадлежит А.

Выражения с множествами

Из множеств, знаков операций над ними и, может быть, скобок можно составлять выражения. Например, А∩В\С.

Необходимо знать порядок выполнения операций в таких выражениях и уметь их читать.

Порядок выполнения операций

Например, а) А∩В\С; б) А∩(В\С); в) А∩(В\С)' .

Чтение выражения начинается с результата последней операции. Например, выражение а) читается так: разность двух множеств, первое из которых пересечение множеств А и В, а второе - множество С.

Круги Эйлера

Операции над множествами и отношения между ними можно изобразить с помощью кругов Эйлера. Это специальные чертежи, на которых обычные множества изображаются кругами, универсальное множество - прямоугольником

 

Задача. Изобразить с помощью кругов Эйлера множество (А∪В)'∩С.

Решение. Расставим порядок выполнения операций в данном выражении: (А∪В)'∩С. Заштрихуем результаты операций согласно порядку их выполнения

 

Свойства операции над множествами (рис.5)

Свойства I - 8 и 10 - 80 связаны между собой гак называемым принципом двойственности:

если в любом из двух столбиков свойств поменять знаки ∩→∪, ∪→∩, ∅→U, U→∅, то получится другой столбик свойств.

 

IV. Разбиение множества на классы

Считают, что множество Х разбито на попарно непересекающиеся подмножества или классы, если выполнены следующие условия:

1) пересечение любых двух подмножеств пусто;

2) объединение всех подмножеств совпадает с множеством Х.

Разбиение множества на классы называют классификацией.

 V. Декартово произведение множеств

Декартовым произведением множеств А и В называется множество пар, первая компонента каждой из которых принадлежит множеству А, а вторая — множеству В Декартово произведение множеств А и В обозначают  А х В. Таким образом, А×В={(x,y)|x∈A˄y∈B}. Операцию нахождения декартова произведения множеств А и В называют декартовым умножением этих множеств.  Если А и В — числовые множества, то элементами декартова произведения этих множеств будут упорядоченные пары чисел.

VI. Правила суммы и произведения

Обозначим число элементов конечного множества A символом n(A). Если множества А и В не пересекаются, то n(AUВ)= n(А) +n (В). Если множества А и В пересекаются, то n(А U В) = n (A) + n (В) — n (A ∩ В).

Число элементов декартова произведения множеств A и В подсчитывается по формуле n (А X В) = n (A) • n (В).

Правило подсчета числа элементов объединения непересекающихся конечных множеств в комбинаторике носит название прави­ла суммы, если элемент х можно выбрать k способами, а элемент у — m способами, причем ни один из способов выбора элемента х не совпадает со способом выбора элемента у, то выбор «х или у» можно осуществить k + m способами.

Правило подсчета числа элементов декартова произведения конечных множеств в комбинаторике носит название правила произведения: если элемент х можно выбрать k способами, а элемент y - m способами, то пару (х,y) можно выбрать km способами.

VII. Список использованных источников

  1. Асеев Г.Г. Абрамов О.М., Ситников Д.Э. Дискретная математика: Учебное пособие. – Ростов н/Д: «Феникс», Харьков: «Торсинг», 2003, -144с.

  2. Виленкин Н. Я. Алгебра. Учебное пособие для IX – X классов средних школ с математической специализацией, 1968

  3. Виленкин Н.Я. Рассказы о множествах. М.: Изд-во «Наука». – 1965. – 128с

  4. Диаграммы Эйлера – Венна.URL:http://studopedia.net/1_5573_diagrammi-eylera-venna.html

  5. Киреенко С.Г., Гриншпон И. Э. Элементы теории множеств (учебное пособие). – Томск, 2003. – 42 с.

  6. Куратовский К., Мостовский А. Теория множеств. – М.: Мир, 1970, - 416с.