Тема. Производная. Геометрический и механический смысл производной

  1. Производная. Рассмотрим некоторую функцию  в двух точках   и . Здесь через х обозначено некоторое малое изменение аргумента, называемое приращением аргумента; соответственно разность между двумя значениями функции:  называется приращением функции. Производной функции  в точке  называется предел, к которому стремится отношение приращение функции к приращению аргумента, когда приращение аргумента стремится к нулю (формула 1).

 Если этот предел существует, то функция  называется дифференцируемой в точке . Производная функции  обозначается (формула 2).

 

  1. Геометрический смысл производной. Рассмотрим график функции . Из рис.1 видно, что для любых двух точек A и B графика функции можно записать формула 3). В ней   - угол наклона секущей AB.

Таким образом, разностное отношение равно угловому коэффициенту секущей. Если зафиксировать точку A и двигать по направлению к ней точку B, то  неограниченно уменьшается и приближается к 0, а секущая АВ приближается к касательной АС. Следовательно, предел разностного отношения  равен угловому коэффициенту касательной в точке A. Отсюда следует вывод.

Производная функции в точке есть угловой коэффициент касательной к графику этой функции в этой точке. В этом и состоит геометрический смысл производной.

  1. Уравнение касательной. Выведем уравнение касательной к графику функции в точке . В общем случае уравнение прямой с угловым коэффициентом имеет вид: . Чтобы найти b, воспользуемся тем, что касательная проходит через точку A: . Отсюда следует: . Подставляя это выражение вместо b, получаем уравнение касательной (формула 4).

  1. Механический смысл производной. Рассмотрим простейший случай: движение материальной точки вдоль координатной оси. При этом задан закон движения точки: координата x движущейся точки – это известная функция времени . В течение интервала времени от до точка перемещается на расстояние: . Её средняя скорость () находится по формуле: . При  значение средней скорости стремится к определённой величине, которая в физике называется мгновенной скоростью  материальной точки в момент времени . Следовательно, для мгновенной скорости можно записать формулу 5. Если сравнить эту формулу с формулой производной 1, то можно сделать вывод, что

 Скорость – это производная координаты по времени. В этом и состоит механический смысл производной. Аналогично, ускорение – это производная скорости по времени: